
On the Latency-Accuracy Tradeoff
in Approximate MapReduce Jobs

Juan F. Pérez
Universidad del Rosario

Bogotá, Colombia
juanferna.perez@urosario.edu.co

Robert Birke
IBM Research Zurich

Rüschlikon, Switzerland
bir@zurich.ibm.com

Lydia Y. Chen
IBM Research Zurich

Rüschlikon, Switzerland
yic@zurich.ibm.com

Abstract—To ensure the scalability of big data analytics,
approximate MapReduce platforms emerge to explicitly trade off
accuracy for latency. A key step to determine optimal approxi-
mation levels is to capture the latency of big data jobs, which is
long deemed challenging due to the complex dependency among
data inputs and map/reduce tasks. In this paper, we use matrix
analytic methods to derive stochastic models that can predict
a wide spectrum of latency metrics, e.g., average, tails, and
distributions, for approximate MapReduce jobs that are subject
to strategies of input sampling and task dropping. In addition to
capturing the dependency among waves of map/reduce tasks, our
models incorporate two job scheduling policies, namely, exclusive
and overlapping, and two task dropping strategies, namely, early
and straggler, enabling us to realistically evaluate the potential
performance gains of approximate computing. Our numerical
analysis shows that the proposed models can guide big data
platforms to determine the optimal approximation strategies and
degrees of approximation.

I. INTRODUCTION

MapReduce (MR) has become the key programming
paradigm for scalable big data analysis through the parallel
execution of map and reduce tasks. While the basic concept
of MapReduce is simple, its implementation involves many
complex steps, starting from the lower level of data stor-
age/access [1], [2] to the higher level of task scheduling [3],
[4] and cluster management [5], [6]. Great efforts have been
made to optimize the performance of MapReduce jobs with
the objective of accelerating the overall job execution times.
With the recent trend of running MapReduce jobs in an on-line
fashion [7] meeting the response time requirement becomes
another critical optimization criterion [8]. To fulfill the ever
stringent latency requirements for MapReduce-like jobs in a
resource conserving manner, emerging approximate processing
platforms, such as BlinkDB [9] and ApproxHadoop [10],
advocate to trade off the job accuracy for the job latency, by
only processing part of the input data.

The key questions to be answered in approximate MapRe-
duce jobs are where, when and how much input data to
drop, given performance targets on accuracy and job latency,
and the available resources. A common accuracy metric is
the width of the confidence interval for the quantity being
computed, whereas the job latency can be the average or tail
percentiles of the execution or response times. As MapReduce
jobs process input data via map tasks and (a smaller amount
of) intermediate data via reduce tasks, reducing the amount of

data to process can significantly reduce task and job execution
times.

Statistical sampling [11], [12] provides good answers to
the question of where and how much data to drop given
an accuracy target. In particular, ApproxHadoop applies two
stage sampling to determine how much input data should be
processed, either by dropping entire map tasks or only a por-
tion of each map task’s input data. However, only the average
execution time has been explored to find the accuracy-latency
optimal tradeoff due to the high complexity in modeling other
types of latency measurements, such as tail execution/response
times. State-of-the-art latency models [10], [13]–[16] either
capture the task execution times in a batch-like setting or
the average response times assuming known execution times.
To strike a more sophisticated tradeoff between accuracy and
latency, models that can precisely capture the distribution of
execution and response times under the complex dependencies
among data inputs, tasks and job arrivals, are strongly needed.

In this paper, we develop stochastic models, based on
matrix analytic techniques, for approximate MapReduce jobs
which are executed in an online fashion and whose map
tasks and their data inputs are subject to drop decisions. Our
contribution lies in that the proposed models incorporate the
detailed execution flow of parallel map and reduce tasks, the
dynamics of jobs arrivals, and, most importantly, the impact
of task dropping and input sampling. We particularly model
the early and straggler task dropping strategies, which discard
a certain number of tasks either right before the start of
or after the completion of fast tasks. We also consider two
scheduling policies, namely, exclusive First-Come-First-Serve
(FCFS), where the cluster executes one job at a time, and
overlapping FCFS, where we partially allow jobs to execute
concurrently. Our analysis derives two key latency metrics
for interactive MapReduce clusters: the distributions of the
job execution times and of the response times. The analysis
therefore supports the selection of approximation strategies
and the specific task dropping and input sampling levels to
achieve average or tail latency targets while fulfilling accuracy
requirements. We evaluate the accuracy-latency tradeoff under
various system settings, considering among others different
data loss levels, task dropping strategies, job scheduling poli-
cies and number of map tasks.



(a)original job (b) approximate job
Figure 1: An example of an original MapReduce job (a) with
3 map tasks, each processing 3 data items, and 2 reduce tasks;
and an approximate MapReduce job (b) with only 2 map tasks,
each processing 2 data items, and 2 reduce tasks.

II. SYSTEM

In this section, we first explain the background of MapRe-
duce jobs and their clusters, followed by a highlight on
approximate MapReduce jobs.

A. MapReduce Jobs and Clusters

MapReduce is a parallel programming paradigm able to
process data at scale, and Hadoop [17] is its best-known
open source implementation. A typical MapReduce job needs
to process input data and return analysis results via parallel
tasks executed in two phases, namely, map and reduce. Since
many parameters exist for both map and reduce tasks, we use
the subscript m in reference to map tasks and the subscript
r in reference to reduce tasks. During the map phase, Nm
map tasks, are spawned to process one input block each and
produce intermediate results that are stored as key-value pairs
in the file system. Afterwards, Nr reduce tasks access and
aggregate the intermediate key-value pairs to produce the final
result. Reduce tasks can either start after the completion of a
certain percentage of map tasks or after the last map task.
Fig. 1 (a) illustrates an example of a MapReduce job.

Users submit job requests to the MapReduce cluster at
rate λ, providing configuration parameters to split the input
data and to set up the map/reduce tasks. A MapReduce
cluster consists of a total of C computing slots. Job tasks
are scheduled onto slots, where the typical practice is to
differentiate between slots for map and reduce tasks. However,
recently emerging platforms, such as Spark [18], have a single
type of slots for both task types, and we therefore focus on
this configuration. When the numbers of map or reduce tasks
is greater than the number of slots, e.g., Nm ≥ C, tasks are
executed in multiple waves.

The default scheduling policy at a MapReduce cluster
is first-come-first-serve (FCFS), where jobs are processed
sequentially depending on their arrival times, as shown in
Fig. 2(a). Note that a job is only allowed to start execution
once the job in front has completely finished its map and
reduce phases. It has therefore been observed [13] that overlap-
ping job executions can significantly improve the performance.
This is illustrated in Fig. 2(b), where the job at the head of
the queue can start its map phase as soon as the job in front
starts to free up slots, i.e., when it has no tasks queued and at

(a) Exclusive FCFS (b) Overlapping FCFS
Figure 2: An example of MapReduce cluster with 9 slots,
serving jobs via two scheduling policies: (a) only one job at
the cluster, and (b) map tasks of the next job can start as soon
as the first job at the cluster only needs to finish reduce tasks.

most C − 1 tasks in execution. Other popular schedulers are
capacity and fair [15], which aim to improve the potentially
long queuing times of small jobs that wait behind large jobs
under the FCFS policy.

B. Approximate MR Jobs

To accelerate the execution time of MapReduce jobs, the
very recent platform ApproxHadoop [10], implements a two-
stage sampling mechanism that enables the tradeoff between
accuracy and execution time. Particularly, ApproxHadoop uses
map task dropping and input sampling to reduce the amount
of data processed while adhering to a given accuracy target,
e.g., the confidence interval of the job analysis should be
within certain thresholds. Map tasks can be either dropped
before execution or after being identified as stragglers, i.e.
exceptionally long running tasks.

Fig. 1(b) illustrates the task dropping mechanism, as here
we drop one task out of three, such that the resulting map task
dropping ratio 1 − θm (number of dropped tasks divided by
the original number of tasks) is 1/3. Similarly, in Fig. 1(b)
we sample two out of the three data items in each of the
remaining map tasks, which makes the input sampling ratio
ηm (percentage of data items processed per block) equal
to 66.67%. The task dropping and input sampling ratios, θ
and η, are thus key tuning parameters in ApproxHadoop which
determine the effective number of tasks executed N = dNθe
and the effective processing rate µ = µ/η at each phase.

ApproxHadoop incorporates a simple latency model via off-
line profiling of a first wave of tasks, assumes that the variation
of execution times across parallel tasks is very small and that
the job execution time is linear in the number of map tasks
and block sizes. The accuracy model is based on the estimated
confidence interval computed as

tNm−1,1−α/2

√
Nm

((
1

θm
− 1

)
s2u +

(
1

ηm
− 1

)
s2i

)
, (1)

where tn,p is the p-th percentile of the Student’s t distribution
with n degrees of freedom, s2u is the inter-task variance
and s2i is the mean intra-task variance. We will adopt this
error function in the remaining of the paper, although the
latency model we introduce can be used in combination with
any error function g(θm, ηm) for the map phase or with
more sophisticated error functions that consider both map and
reduce phases.



Figure 3: Illustration of early map task drop and straggler task
drop for a job of 3 map tasks and 2 reduce tasks.

Note that on the one hand dropping one map task can
not only save the time to process a data block, but also the
overhead of initializing a map task. On the other hand, drop-
ping few parallel map tasks may not result into a significant
reduction in job execution time, since this highly depends
on the longest execution times across all parallel tasks, the
execution of tasks in multiple waves given the number slots,
and the dependency between map and reduce phases.

III. REFERENCE SYSTEM MODEL

We propose the following reference system model of ap-
proximate MapReduce jobs. Our objective is to derive means
and percentiles of the execution and response times to guide
the selection of task dropping and input sampling ratios.

A MapReduce cluster is composed of a job queue and a pool
of C homogeneous slots that can process one task at a time.
Job arrivals follow a Markovian Arrival Process (MAP) [19]
with parameters (d,D0,D1), where d is the number of arrival
phases. Each job consists of Nm map tasks and Nr reduce
tasks, which have exponentially distributed processing times
with mean 1/µm and 1/µr, respectively. Upon arrival, jobs
are served in FCFS order, with either exclusive or overlapping
scheduling, as described in the previous section and illustrated
in Fig. 2. Jobs are subject to task dropping and input data
sampling, and these mechanisms operate at both map and
reduce phases. For the map and reduce phases, the task
dropping ratios are 1−θm and 1−θr, while the input sampling
ratios are ηm and ηr, respectively. Finally, we focus on the case
where all map tasks complete before reduce tasks start.

Early v.s. straggler dropping We consider two types of
task droppings: early dropping and straggler dropping. In early
dropping N = Nθ tasks are scheduled and executed whereas
the remaining N − N tasks are never scheduled. Instead, in
straggler dropping all N tasks are scheduled and executed
until the first N map tasks complete, moment at which the
remaining N − N tasks are terminated. Fig. 3 illustrates an
example of how to drop one map task out of three using early
and straggler dropping.

IV. APPROXIMATE MR WITH EXCLUSIVE SCHEDULING

In this section we introduce a latency model for approxi-
mate MapReduce jobs, following the reference system model
introduced in Section III and using matrix analytic techniques.
We consider both early and straggler dropping strategies. Since
the analysis of both cases is similar, we describe in detail the
early dropping case, while for straggler dropping we focus on
the main differences.

A. Early Dropping

To model the approximate MR execution we describe the
job execution time as a phase-type (PH) distribution, where
phase n indicates that the job still has n tasks to complete,
1 ≤ n ≤ Nm+Nr. A job thus starts service in phase Nm+Nr

and moves from phase n to phase n− 1 with rate f(n) given
by

f(n) =


Cµm, Nr + C < n ≤ Nr +Nm,

(n−Nr)µm, Nr < n ≤ Nr + C,

Cµr, C < n ≤ Nr,

nµr, 0 < n ≤ C.
This expression captures the availability of C slots, which
limit the number of tasks executing in parallel, as well as the
requirement that all map tasks must complete before the start
of the reduce phase. To put this description in standard PH
notation [19] we define the state space of this distribution as
the set S = {Nm +Nr, Nm +Nr − 1, . . . , 1}, in descending
order. Thus the initial probability vector α has a single non-
zero entry, namely αNm+Nr

= 1, indicating that the job
starts service in phase Nm + Nr with probability one. The
PH sub-generator G is a bidiagonal matrix with non-zero
entries Gn,n−1 = f(n) and Gn,n = −f(n), according to
the evolution from phase n to phase n − 1 with rate f(n).
The mean job service time is τ = α(−G)−11, where 1 is a
column vector of ones.

With the above definitions we can obtain the response-time
distribution as in [20], defining an age process X(t) that keeps
track of the age of the job in service, and a phase process
J(t) = (A(t), S(t)) that keeps track of the arrival process
phase A(t) and the service process phase S(t). Since the
job arrival rate is λ = γD11, where γ is the stationary
distribution of the Markov chain with generator D0 + D1,
this system is stable whenever ρ = λτ < 1. If the system is
stable, the stationary distribution of the process (X(t), J(t))
has a matrix-exponential representation, that is, it can be
expressed as π(x) = π0 exp(Tx) for x > 0. Here π0 is
the stationary distribution of the phase J(t) at the start of a
busy period. Since a busy period starts with the arrival of a
new job, which starts service according to α, π0 is given by
γ ⊗α, where ⊗ denotes the Kronecker product, and γ is the
stationary distribution of the arrival process phase just after
an arrival, thus it is the stationary distribution of the Markov
chain (MC) with transition matrix −D−10 D1. Furthermore, we
can obtain the matrix T by solving the equation [20]

T = Id ⊗G+

∫ ∞
0

exp(Tx)
(

exp(D0x)D1 ⊗ G̃
)
dx, (2)

where I is an identity matrix of size d and G̃ = (−G1)α
is a matrix that captures the service phase transition when a
job completes service, with rates in vector (−G1), allowing
a new job to start service according to α. Equation (2) can be
solved efficiently by exploiting the structure of the matrices G
and G̃ as in [21]. In fact, the size m = d (Nm +Nr) of this
system makes it very scalable and suitable to consider jobs
with hundreds or thousands of tasks.



From π0 and T we can obtain the probability of waiting
φ and the PH representation of the waiting time distribution
(βw,Bw), though we avoid the details as these are provided
in Section V for the more general case with overlapping
jobs. Finally, we obtain the PH representation (βr,Br) of
the response time distribution with parameters

βr = [φβw (1− φ)α], Br =

[
Bw (−Bw1)α
0 G

]
,

where we sum waiting and service times for those jobs that
wait, with probability φ, and consider only the service time for
those jobs that do not wait. This representation thus provides
us with latency moments and percentiles for the approximate
MR execution with early task dropping.

B. Straggler Dropping

For straggler dropping we can also represent the job service
time as a PH distribution, but in this case the phase n keeps
track of the number of tasks scheduled but not completed.
Thus, the state space is given by S = {Nm+Nr, Nm+Nr−
1, . . . , Nm −Nm + 1 + Nr, Nr, Nr − 1, . . . , Nr −Nr + 1},
reflecting the fact that initially all Nm+Nr tasks are scheduled
but we only require Nm and Nr to complete for the map and
task phases, respectively. The number of service phases is thus
Nm +Nr, and we can write the transition rate in phase n as

f(n) =


min{n−Nr, C}µm, Nr +Nm −Nm + 1 ≤ n

≤ Nr +Nm,

min{n,C}µr, Nr −Nr + 1 ≤ n ≤ Nr.
The PH representation of the job service has initial probability
vector α with αNm+Nr

= 1. Similar to the early dropping
case, the PH sub-generator matrixG has non-zero off-diagonal
entries Gn,n−1 = f(n) for all n ∈ S, except for phase n =
Nr + Nm − Nm + 1, where the transition occurs with rate
f(n) to phase Nr rather than to phase n−1, as this is the last
phase of the map stage. With this PH representation of the job
service time we can proceed as in the previous section to find
the response time distribution.

Remark 1. Here and in the previous section we assume that
either early or straggler dropping are implemented in both
map and reduce phases. These models can be easily combined
to have, for instance, early dropping in the map phase and
straggler dropping in the reduce phase.

V. INTRODUCING JOB OVERLAP

The model in Section IV captures well clusters where a
single job is processed at any point in time. This type of
operation means that the job in front of the queue must wait
until all the reduce tasks of the job currently in service finish
execution. Thus, there will be idle slots from the moment
the job in service has C − 1 reduce tasks remaining until
it completes the reduce phase. Allowing the job in front of
the queue to start its map phase as soon as there are idle slots
can therefore reduce the job response times. In this section we
introduce a model to assess the potential benefits of allowing
jobs to overlap.

A. The Waiting Times

Whereas we want to introduce the flexibility of allowing
a job to start service if there are idle slots, allowing jobs to
enter in a FCFS manner without any constraint would require
keeping track of the exact phase of each of the up to C jobs in
service. Such a model would suffer from state-space explosion,
limiting its usefulness. We therefore opt for an intermediate
solution where we allow the job at the head of the queue to
start service as long as there are idle slots, but we do not allow
this job to continue to the reduce phase until the job in front
completes its own reduce phase. This means that there can be
up to two jobs in execution, where the youngest one is not
allowed to move on to the reduce phase until the oldest one
completes its own reduce phase.

Remark 2. In the following we assume that early task
dropping is adopted and that Nr ≥ C, such that a job starts
its reduce phase by using all slots. Modifications to cover the
Nr < C and late dropping cases can be defined similarly, but
we omit the details in the interest of clarity and space.

To model this setup we define a bi-variate Markov process
(X(t), J(t)), as in the previous section, but now the age X(t)
keeps track of the age of the youngest job in service, whereas
the phase J(t) = (A(t),M(t), R(t), Y (t)) keeps track of
the phase of the arrival process A(t), the number of map
M(t) and reduce R(t) tasks of the oldest job in service,
and the number of remaining map tasks Y (t) of the second
(youngest) job in service, if any. We describe the service phase
(M(t), R(t), Y (t)) with a tuple (nm, nr, ny), and distinguish
three steps of execution:

M (nm, Nr,−), where there is one job in execution in the
map phase with 1 ≤ nm ≤ Nm map tasks to complete.

R (0, nr,−), where there is one job in execution with C ≤
nr ≤ Nr reduce tasks to complete. A second job is not
allowed because the job in service still requires at least
all the C servers.

R/M (0, nr, ny), where there are two jobs in execution: the
oldest still has 1 ≤ nr ≤ C−1 reduce tasks to complete;
whereas the youngest has 0 ≤ ny ≤ Nm map tasks to
complete.

The service phase space size is thus ms = NmC+Nr−Nm.
In this model, the servers will be blocked in all service

phases of the form (0, nr, 0) with nr > 0, which indicate
the youngest job already finished all its map tasks, while the
oldest job still has nr reduce tasks to process. However, if the
number of map tasks is at least C, and map and reduce tasks
have similar processing times, such blocking states will have
a small probability since they require that C − 1 reduce tasks
already in service take longer to process than the Nm ≥ C
map tasks that only have C − nr servers to execute. This
is further exacerbated if map tasks require several waves to
execute (such that Nm is many times larger than C) and if
map processing times are larger than reduce processing times,
as is common in many MR applications.



Table I: Transition rates for the Q and Z matrices in the overlapping model.
Matrix Step Phase Dest Rate Condition

Q

M (nm, Nr,−) (nm − 1, Nr,−) min{nm, C}µm 1 < nm ≤ Nm

M → R (1, Nr,−) (−, Nr,−) µm

R (0, nr,−) (0, nr − 1,−) Cµr C + 1 ≤ nr ≤ Nr

R/M
(−, nr, ny) (−, nr − 1, ny) nrµr 1 < nr ≤ C − 1

(−, nr, ny) (−, nr, ny − 1) min{ny , C − nr}µm 1 ≤ nr ≤ C − 1, ny ≥ 1

R/M →M (−, 1, ny) (ny , Nr,−) µr ny ≥ 1

R/M → R (−, 1, 0) (−, Nr,−) µr

Z R→ R/M (−, C,−) (−, C − 1, Nm) Cµr

At this point we should note two key differences between
the overlapping case and its non-overlapping counterpart in
Section IV. First, with overlapping a job can start service in
the “standard” condition (Nm, Nr,−) if it finds the cluster
idle, otherwise it starts service in an “overlapping” state
(0, nr, Nm). Second, due to the overlapping a job service time
will be affected by the evolution of the job in front, as its own
tasks can only use the slots freed by the job in front. As a
result, the job service time cannot be determined in advance
and we can only obtain its stationary version after finding the
system steady state.

To obtain the waiting-time distribution we define the ma-
trices Q and Z, which hold transition rates among service
phases without and with a new job service start, respectively.
Table I summarizes the non-zero entries of these matrices.
Here the first row describes transitions within step M , and the
second row the transition from step M to step R when the
last map task completes. Next, the third row shows transition
within the R step, with the transition from this step to step
R/M being relegated to the first row for matrix Z as this
transition causes a new job to start service. Within step R/M ,
rows 4 and 5 capture service completions of reduce and map
tasks, respectively. Here there are nr slots processing reduce
tasks and C − nr available to the map tasks of the youngest
job. Finally, a transition from step R/M to step M occurs
when the last reduce task terminates, and there is at least one
map task of the youngest job, which continues its map phase.
However, if the youngest job has already completed all its map
tasks, when the job in front completes its last reduce task the
youngest job starts its reduce phase.

With the above definitions we can proceed as in the non-
overlapping case to find the stationary distribution of the
process (X(t), J(t)), which has a matrix-exponential repre-
sentation [22] π(x) = π0 exp(Tx) for x > 0. In this case the
matrix T solves the equation

T = Id ⊗Q+

∫ ∞
0

exp(Tx) (exp(D0x)D1 ⊗Z) dx, (3)

where the first and second terms consider transitions without
and with new jobs starting service, respectively.

Different from the non-overlapping case, here the system
has a more complex boundary behavior as a job that finds
up to C − 1 slots busy with reduce tasks can start service
immediately. As a result, we label as not-full a period where
this condition holds, and its service phases are given by the

set S0 = {0, 1, . . . , C − 1}, of size m0 = C, indicating the
number of slots busy with reduce tasks. We also label full
the remaining periods, where at least C servers are busy or
the current job in service is in the map phase. The process
(X(t), J(t)) thus describes well the evolution during full
periods while during not-full periods the system evolves on
the set S0. Starting from a full period, the system may jump
to a not-full period if the service phase is (−, C,−) and the
next reduce task completes before the next arrival. We thus
define the ms ×m0 matrix Z∗, which has a single non-zero
entry equal to Mµr corresponding to a transition from phase
(−, C,−) to phase C − 1.

During a not-full period the service phase evolves according
to the m0 × m0 matrix Q0, which has non-zero entries
Q0
i,i−1 = iµr for i ∈ S0, indicating the completion of the

remaining reduce tasks. A not-full period terminates with an
arrival as it triggers a transition to the full period, and the
service phase transitions according to the m0×ms stochastic
matrix Z0. Its non-zero entries mark a transition with proba-
bility 1 from phase 0 to phase (Nm, Nr,−) if the system is
idle, and from any other phase i in S0 to phase (−, i, Nm) as
the new arrival starts its map phase.

Now we can find π0 as the solution to the equation

π0 = π0

∫ ∞
0

exp(Tx) (exp(D0x)⊗Z∗) dx(
−(D0 ⊗ Im0 + Id ⊗Q0)

)−1 (
D1 ⊗Z0

)
,

which describes how the system reaches age x with density
π0 exp(Tx), from which it may jump to a not-full period if
no arrival occurs before x time units, and starts the not-full
period according to matrix Z∗. Next, the evolution in the not-
full period occurs according to matrices D0 and Q0 for the
arrival and service phases, and finally a new full period starts
when an arrival occurs with rates in D1 and the service phase
jumps according to matrix Z0. The above equation can be
solved by first obtaining, as a by-product of solving (3), the
matrix L given by

L =

∫ ∞
0

exp(Tx) (exp(D0x)⊗ Ims) dx,

which we can use to find π0 solving the linear system

π0 = π0L(Id⊗Z∗)
(
−(D0 ⊗ Im0 + Id ⊗Q0)

)−1 (
D1 ⊗Z1

)
.

From π0 and T we can obtain the probability of waiting
φ and the PH representation of the waiting time distribution
(βw,Bw) as in [22].



B. The Job Service Time

To describe the job service time we setup a PH represen-
tation (βs,Bs) composed of three stages, similar to those
defined in the previous section: R/M , where the job is in
the map phase, but sharing resource with the job in front; M ,
where the job is on its own during its map phase; and R∗,
where the job is in its reduce phase, either sharing resources
or not. Whereas stages R/M and M are the same as those
defined in the previous section, the R∗ stage is different as
we do not care if another job is in service since this has no
influence on the evolution of the job already in the reduce
phase. The stage R∗ thus has phases {Nr, . . . , 1}. Next, we
define the service sub-generator as

Bs =

QR/M,R/M QR/M,M QR/M,R∗

0 QM,M QM,R∗

0 0 BR∗,R∗

 , (4)

where we use the sub-matrices of the matrix Q defined in
Table I. The transitions into stage R∗ are defined as those into
stage R for matrix Q, but keeping track of the reduce phase
nr only. Further, the non-zero entries of matrix BR∗,R∗

show
transitions from phase i to phase i− 1 with rate min{i, C}µr
for 1 ≤ i ≤ Nr, indicating the successive completion of
reduce tasks.

The initial job service phase distribution βs can be obtained
by partitioning it according to the three service steps

βs =
[
β
R/M
s βMs βR

∗

s

]
. (5)

Since a job cannot start service in the R∗ phase, βR
∗

s is a zero
vector. To find the other sub-vectors of βs we write π0 as

π0 =
[
πM0 πR0 π

R/M
0

]
,

according to the steps defined in the previous section. Thus
a job that starts service in an idle system begins in stage M
with phase according to

βMs = (1− φ)πM0 ,

where we recall φ is the probability of waiting. Instead, a job
that starts service in stage R/M can start without waiting,
according to vector πR/M0 . Alternatively, it could start after
waiting according to the distribution of the phase after a
downward jump κ = −π0T

−1L(D1 ⊗ Z). Partitioning this
vector according to the three service stages we obtain κR/M

corresponding to stage R/M . Thus we have

βR/Ms = φκR/M + (1− φ)π
R/M
0 .

We summarize the discussion in the following result.

Lemma V.1. The job service time distribution has PH repre-
sentation (βs,Bs), where Bs is given by (4) and βs by (5).

C. The Response Time

To obtain a PH representation (βr,Br) of the response time
distribution we define the vectors βs,wait and βs,non-wait, which
hold the probability distribution of the initial service for jobs
that wait and that do not wait, respectively. Partitioning these
vectors according to the three service steps, they are given by

βs,wait =
[
κR/M 0 0

]
, βs,non-wait =

[
π
R/M
0 πM0 0

]
,

since jobs that wait start in step R/M according to vector
κ, whereas jobs that do not wait start in steps R/M or
M according to vector π0. Note that these two vectors are
stochastic. Now we obtain the PH representation (βr,Br) as

βr =
[
βw (1−φ)βs,non-wait

]
, Br =

[
Bw (−Bw1)βs,wait
0 Bs

]
,

where the first block of phases covers the evolution of jobs as
they wait, while the second block considers the job service.

VI. EVALUATION

We demonstrate how the derived analysis can guide the
design of approximate MapReduce mechanisms under a large
space of system parameters, scheduling policies, and choices
of approximate strategies. We particularly consider the ex-
clusive and overlapping FCFS scheduling policies described
in Section II. In addition to evaluating the latency-accuracy
tradeoff in both systems, we study the impact of the num-
ber of tasks for the exclusive FCFS system, and investigate
the performance improvement introduced by the overlapping
execution of approximate MapReduce jobs. We verify the
correctness of the stochastic analysis by simulation, but in the
interest of space we omit this comparison.

A. System Parameterizations

We first list down the system parameters and their ranges
used in the remainder of this section. The number of slots
in the MapReduce cluster is C = [50, 20]. Jobs consist of
Nm = 2C map tasks and Nr = C reduce tasks, except for
the scenario where we study the impact of the number of
tasks/waves. The mean task execution times are 1/µm = 1
and 1/µn = .5, respectively, when no input sampling policy
is applied. We compute the accuracy as in Eq. (1), assuming
the inter task and the mean intra task standard deviations are
s2u = 0.1 and s̄ = 0.1, respectively.

As for the metrics of merit, we report the 95th (RT95) and
the 99th percentile (RT99) of the job response times, and the
error introduced by the map task dropping ratio (1− θm) and
the map input sampling ratio (ηm). We note that as we consider
jobs that have a large number of map tasks, we focus on map
tasks and leave exploration on the reduce task as future work.
Due to the large combination of system parameters and metrics
of merits, we focus on a subset of results to demonstrate
the effectiveness of our analysis in guiding the choice of θm
and ηm against different system operation points.

B. Exclusive System

1) How to Drop?: To strike the tradeoff between latency
and accuracy, the first question to answer is where and how
much to drop. In Fig. 4, we depict the relative error [%]
and 95th percentile response time, RT95, by applying three
approximation strategies, namely, (a) early task dropping, (b)
input sampling and (c) straggler dropping. We only apply
one policy at a time. For instance, when we drop map
tasks, we process all of their data without sampling. To ease
the comparison between policies, the values of the x-axes
represent the amount of tasks or input data processed, e.g.,



0.2 0.4 0.6 0.8 1

θ
m

0

20

40

60

80

100

R
T

 9
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

o
r

Util=20%

Util=50%

Util=80%

0.2 0.4 0.6 0.8 1

η
m

0

20

40

60

80

100

R
T

 9
5

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

o
r

Util=20%

Util=50%

Util=80%

0.2 0.4 0.6 0.8 1

θ
m

0

20

40

60

80

100

R
T

 9
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

o
r

Util=20%

Util=50%

Util=80%

(a) Early dropping (b) Input sampling (c) Straggler dropping
Figure 4: Basic system: accuracy and the 95th percentile response time applying one approximation policy at a time: (a) early
task dropping, (b) input sampling, and (c) straggler dropping.

0.2 0.4 0.6 0.8 1

η
m

20

40

60

80

100

120

140

R
T

 9
9

No. Tasks: 50

No. Tasks: 150

No. Tasks: 250

0.2 0.4 0.6 0.8 1

θ
m

0

50

100

150

R
T

 9
9

No. Tasks: 50

No. Tasks: 150

No. Tasks: 250

(a) Input sampling (b) Straggler dropping
Figure 5: Impact of number map tasks/waves on effectiveness
of straggler task dropping and input sampling.

the value 0.6 shows that only 60% of the number of tasks
or input data is processed. We consider three different arrival
rates, resulting in utilizations of 20%, 50%, and 80% of the
baseline system without any approximation strategy, for which
the RT95 is around 115, 45, and 28 time units, respectively.

After applying approximate strategies, the RT95 decreases
monotonically with respect to θ and η and the latency improve-
ment is particularly visible for the high utilization baseline, as
observed from the steeper slope for the case of 80% utilization.
For all three utilization curves, straggler dropping is best in
reducing the RT95, followed by input sampling, while early
task dropping is last. In other words, given the same amount
of data to process, straggler dropping can achieve the lowest
latency, particularly for the scenario with high utilization.
Another observation worth mentioning is the second order
effect of the approximation strategy on RT95. While input
sampling and straggler dropping result into convex like latency
curves, early task dropping shows a concave shape. We reason
that straggler dropping benefits greatly from even a little room
for approximation, say 1−θ=x%, as it avoids executing the
x% longest tasks. Input sampling also benefits substantially
as it reduces the execution of all tasks, including the longest,
by x%. Instead, early dropping avoids executing x% tasks
but without any guarantee that these are the longest ones.
As a result, the latency curves under straggler dropping and
input sampling decrease quickly as θ and η decrease, but they
decrease much more slowly under early dropping.

Looking at the accuracy in Fig. 4, one can see that the
relative error decreases in θm and ηm without any surprise. For

the particular inter- and intra- task standard deviation analysis
considered here, the resulting accuracy loss is only slightly
better under input sampling than under early or straggler task
dropping. AS such, for a given relative error target the strategy
that results in the minimum RT95 is straggler dropping. For
example, to bound the relative error within 0.06, the straggler
dropping strategy can drop up to 70% of tasks and result
into an RT95 around 28, while the early dropping and input
sampling can only achieve 34 and 56, respectively.

2) Impact of Job Sizes: We now study how the different
approximation strategies perform for different job sizes, i.e.,
for number of map tasks of [50, 150, 250]. As the number of
slots is 50, the resulting numbers of map waves are [1, 3, 5].
We focus on the comparison between straggler dropping and
input sampling under the scenarios where the base utilization
without any dropping/sampling strategy is 80%. Fig. 5 depicts
RT99 under different θm, ηm, and number of waves.

For big jobs, say having five waves, the latency reduction
achieved by either straggler dropping or input sampling is
more visible than for small jobs. As shown in Fig. 5, RT99 of
five-wave jobs can drop from 135 to 35 and 36, respectively,
whereas RT99 of single-wave jobs drops from 106 to 40
and 45. As a result, big jobs benefit more strongly from
approximation strategies, as they start from high response
times, which improve with increasing approximation. Until
ηm < 0.45 and θm < 0.35, big jobs outperform small jobs.
Moreover, similar to our previous findings, straggler dropping
is more effective in reducing the latency, as shown by the
steep descent around θm = 0.9, whereas input sampling has a
smoother effect on the latency, across all job sizes.

C. Overlapping Systems

Fig. 6 summarizes the accuracy and latency tradeoff for the
overlapping system. To ease the comparison with the simple
FCFS system, the configurations used here are identical to
the ones used in Fig. 4. Clearly, reducing the amount of
data processed either through task dropping or input sampling
indeed decreases the response times. The reduction of response
times shows a linear trend for early dropping and input
sampling, whereas straggler dropping shows a steep descent
at the beginning and then flattens out. When the reduction is
around 90%, i.e., ηm = 0.1 and θm = 0.1, the improvement



0.2 0.4 0.6 0.8 1

θ
m

16

18

20

22

24

26

28

30

32

R
T

 9
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

o
r

Util=20%

Util=50%

Util=80%

0.2 0.4 0.6 0.8 1

η
m

10

15

20

25

30

35

R
T

 9
5

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

o
r

Util=20%

Util=50%

Util=80%

0.2 0.4 0.6 0.8 1

θ
m

10

15

20

25

30

35

R
T

 9
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

o
r

Util=20%

Util=50%

Util=80%

(a) Early dropping (b) Input sampling (c) Straggler dropping
Figure 6: Overlap systems: accuracy and the 95th percentile response times applying one approximation policies at a time: (a)
early task dropping, (b) input sampling and (c) straggler dropping.

0.01 0.02 0.03 0.04 0.05 0.06

λ

20

40

60

80

100

120

140

160

R
T

 9
9

Exclusive

Overlap

0.01 0.02 0.03 0.04 0.05 0.06

λ

0

20

40

60

80

100

U
ti
liz

a
ti
o
n
 [
%

]

Exclusive

Overlap

(a) Response times (b) Utilization
Figure 7: Performance difference between overlapping and
simple FCFS systems.

in response times is around 25% for all three strategies.
Compared to the basic FCFS system, approximate strategies
show here lower reductions in response times.

One can also use Fig. 6 to answer the question: in order
to bound the relative error within 0.06, which strategy can
achieve the minimum response times when the baseline system
is roughly 80% utilized? As all three strategies have similar
accuracy curves with respect to ηm or θm, they can roughly
drop up to 70% of tasks and still achieve the error target.
Straggler dropping results in the smallest RT95, around 18.5,
while early dropping and input sampling can only achieve 19.5
and 22, respectively. Our stochastic models therefore serve
as an efficient mean to explore the configuration space when
searching for the subtle tradeoff between latency and accuracy.

Finally, we present the performance gains achieved by the
overlapping system. We particularly consider a cluster with 20
slots and job arrival rate ranging from λ = 0.01 to 0.07. We
do not apply any approximation strategy, keeping the dropping
and sampling ratios at one. Fig. 7 presents the response
times and cluster utilization for the exclusive and overlapping
scheduling policies. We observe that the overlapping system
offers much shorter response times than the exclusive system,
thanks to the reduction in queueing time achieved by allowing
the job at the head of the queue to start as soon as the job
in front frees up slots. In fact, this reduction in queueing
times compensates the increase in execution time caused by
the fact that the job that starts processing can only use the
slots made available by the job in front. Another obvious
benefit of overlapping jobs is to avoid idle slots, which do

not serve any request while other jobs still wait in the queue.
In Fig. 7(b), one can see that the better utilization levels
achieved by overlapping job executions is particularly visible
for high arrival rates. All in all, overlapping executions offer
better resource utilization and lower response times, and their
benefits are more prominent in highly loaded systems.

VII. RELATED WORK

Motivated by the wide adoption of the MapReduce pro-
gramming paradigm, there is a plethora of studies that model
and optimize the performance of MapReduce jobs, from high
level resource managing [23], [24], processing platforms [18],
scheduling policies [15], [25], task managements [26], to
lower level data block managements [1], [2], [2]. We partic-
ularly highlight and summarize the prior art that explores the
latency-accuracy tradeoff for MapReduce jobs and develops
latency models for capturing the execution times and response
times for MapReduce jobs.

Approximate MapReduce Jobs Introducing approximation
to MapReduce jobs by only processing a subset of the input
data at the cost of analysis accuracy stems from the con-
cern of resource efficiency, query latency [12], and analysis
accuracy [9]. Rinard [27] derives the accuracy bound under
task dropping; whereas Rinodato et al. [28] develop an sam-
pling algorithm for MapReduce jobs, PARMA, that performs
associate rule mining. BlinkDB [9], an approximate query
processing framework based on Spark [18], provides accuracy
guarantees in short response times by leveraging statistical
sampling theory to choose the input data. Approxhadoop [10]
provides a framework that combines input sampling with task
dropping via the two-stage sampling theory so as to achieve
user specified accuracy targets with only a minimum amount
of processing. While the related work provides mechanisms
to achieve the desirable accuracy target, little is on capturing
the impact of input and task dropping on execution times and
response times.

Latency Model for MapReduce The existing related work
on modeling MapReduce centers on the execution time or the
response time of MapReduce jobs, particularly on the average
values. Models that capture the execution time at the task
level, i.e., data blocks, number of tasks, slots, tend to rely on
profiling techniques but overlook aspect of job arrivals. Zhang



et al. [13], [29] propose a set of linear system models and
application models that can capture the dependency between
data inputs and execution times via a careful parameterization
on production installations. Goiri et al. [10] use a linear model
that consists of a fixed and variable time overhead, depending
on the number of map tasks and input data. Based on their
findings, our model assumes the linear relationship between
the data input and execution time per task but further captures
the complex dynamics of job arrivals, randomness in the single
task execution time, as well as, the effect of task dropping
and input sampling on the distribution of execution time,
particularly the tails.

Another set of work modeling the response time of MapRe-
duce jobs can capture well the impact of job arrivals and
also scheduling policies, but tend to abstract the task dy-
namics, i.e., assuming jobs completion is simply a random
variable. Wang et al. [30] focus on modeling the execution
time of phases, considering the data locality, and present a
scheduler to overcome the performance degradation brought
by imbalanced locality. Tan et al. [14] optimize the reduce
phase by considering the locality of intermediate key-value
pairs so as to optimize the job response time of sequential
MapReduce jobs. Lin et al. [15] considers the performance of
overlapping map and shuffle phases and explores the designs
of scheduling policies via theoretical analysis, as well as, trace
driven simulations. As this class of models simplifies the task
execution times, they are not immediately applicable to exploit
the tradeoff between analysis accuracy and response time.

In contrast to the existing models, our analysis is not only
able to model the distribution of response times under three
approximation strategies but also for two scheduling systems.

VIII. CONCLUDING REMARKS

Motivated by the rise of approximate processing platforms
and the lack of suitable latency models, we develop stochastic
models to capture the latency distribution for approximate
MapReduce jobs that are executed in an on-line fashion.
Using matrix analytic techniques, we derive the distribution of
execution times and response times of approximate jobs for ex-
clusive and overlapping scheduling. Our analysis can evaluate
the tradeoff between different latency metrics, particularly the
tail percentiles, and the accuracy, under three approximation
strategies, namely early task dropping, input sampling and
straggler task dropping. We explore different combinations of
system parameters and show that straggler task dropping is
the most effective in improving the latency, achieving signif-
icant reductions by dropping only a small fraction of tasks.
The models also quantify the significant performance gains
obtained by allowing the execution of partially-overlapping
jobs, which increases the resource utilization while reducing
the job response times.

ACKNOWLEDGMENT

This work has been partly funded by the Swiss National Sci-
ence Foundation (projects 407540 167266 and 200021 1410).
Juan F. Pérez has been supported by the ARC Centre of Ex-
cellence for Mathematical and Statistical Frontiers (ACEMS).

REFERENCES

[1] Y. Zhao and J. Wu, “Dache: A data aware caching for big-data
applications using the mapreduce framework,” in INFOCOM, 2013, pp.
35–39.

[2] B. Wang, J. Jiang, and G. Yang, “Actcap: Accelerating mapreduce
on heterogeneous clusters with capability-aware data placement,” in
INFOCOM, 2015, pp. 1328–1336.

[3] X. Bu, J. Rao, and C. Xu, “Interference and locality-aware task schedul-
ing for mapreduce applications in virtual clusters,” in HPDC, 2013, pp.
227–238.

[4] Y. Yuan, D. Wang, and J. Liu, “Joint scheduling of mapreduce jobs with
servers: Performance bounds and experiments,” in INFOCOM, 2014, pp.
2175–2183.

[5] S. Spicuglia, L. Y. Chen et al., “Optimizing capacity allocation for big
data applications in cloud datacenters,” in IFIP/IEEE IM, 2015, pp. 511–
517.

[6] Y. Ying, R. Birke et al., “Optimizing energy, locality and priority in a
mapreduce cluster,” in IEEE ICAC, 2015, pp. 21–30.

[7] T. Condie, N. Conway et al., “Mapreduce online,” in NSDI, 2010, pp.
313–328.

[8] R. Birke, M. Björkqvist et al., “Meeting latency target in transient burst:
a caseon spark streaming,” in IEEE IC2E, 2017.

[9] S. Agarwal, B. Mozafari et al., “Blinkdb: queries with bounded errors
and bounded response times on very large data,” in Eurosys, 2013, pp.
29–42.

[10] I. Goiri, R. Bianchini et al., “Approxhadoop: Bringing approximations
to mapreduce frameworks,” in ASPLOS, 2015, pp. 383–397.

[11] S. Lohr, Sampling: Design and Analysis. Cengage Learning, 2009.
[12] S. Agarwal, H. Milner et al., “Knowing when you’re wrong: building

fast and reliable approximate query processing systems,” in SIGMOD,
2014, pp. 481–492.

[13] Z. Zhang, L. Cherkasova et al., “Performance modeling and optimization
of deadline-driven pig programs,” TAAS, vol. 8, no. 3, p. 14, 2013.

[14] J. Tan, S. Meng et al., “Improving reducetask data locality for sequential
mapreduce jobs,” in INFOCOM, 2013, pp. 1627–1635.

[15] M. Lin, L. Zhang et al., “Joint optimization of overlapping phases in
mapreduce,” SIGMETRICS Performance Evaluation Review, vol. 41,
no. 3, pp. 16–18, 2013.

[16] Z. Qiu, J. F. Pérez, and P. G. Harrison, “Beyond the mean in fork-join
queues: Efficient approximation for response-time tails,” Perform. Eval.,
vol. 91, pp. 99–116, 2015.

[17] “Apache Hadoop Distributed File System,” http://hadoop.apache.org/.
[18] “Apache Spark,” http://spark.apache.org/.
[19] G. Latouche and V. Ramaswami, Introduction to matrix analytic methods

in stochastic modeling. SIAM, 1999.
[20] B. Sengupta, “Markov processes whose steady state distribution is

matrix-exponential with an application to the GI/PH/1 queue,” AAP,
vol. 21, pp. 159–180, 1989.

[21] Z. Qiu and J. F. Pérez, “Evaluating replication for parallel jobs: An
efficient approach,” IEEE Trans. Parallel Distrib. Syst., vol. 27, 2016.

[22] S. Asmussen and J. R. Møller, “Calculation of the steady state waiting
time distribution in GI/PH/c and MAP/PH/c queues,” Queueing Syst.,
vol. 37, pp. 9–29, 2001.

[23] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and qos-
aware cluster management,” in ASPLOS, 2014, pp. 127–144.

[24] B. Hindman, A. Konwinski et al., “Mesos: A platform for fine-grained
resource sharing in the data center,” in NSDI, 2011, pp. 295–308.

[25] Y. Le, J. Liu et al., “Online load balancing for mapreduce with skewed
data input,” in INFOCOM, 2014, pp. 2004–2012.

[26] G. Ananthanarayanan, M. C.-C. Hung et al., “Grass: Trimming strag-
glers in approximation analytics,” in NSDI, 2014, pp. 289–302.

[27] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks,” in ICS, 2006, pp. 324–334.

[28] M. Riondato, J. A. DeBrabant et al., “PARMA: a parallel randomized
algorithm for approximate association rules mining in mapreduce,” in
CIKM, 2012, pp. 85–94.

[29] Z. Zhang, L. Cherkasova, and B. T. Loo, “Parameterizable benchmarking
framework for designing a mapreduce performance model,” Concurr.
Comput., vol. 26, no. 12, pp. 2005–2026, 2014.

[30] W. Wang, K. Zhu et al., “Map task scheduling in mapreduce with data
locality: Throughput and heavy-traffic optimality,” in INFOCOM, 2013,
pp. 1609–1617.


