
1

LINE: Evaluating Software Applications in
Unreliable Environments

Juan F. Pérez and Giuliano Casale

Abstract—Cloud computing has paved the way to the flexible
deployment of software applications. This flexibility offers service
providers a number of options to tailor their deployments to the
observed and foreseen customer workloads, without incurring
in large capital costs. However, cloud deployments pose novel
challenges regarding application reliability and performance. Ex-
amples include managing the reliability of deployments that make
use of spot instances, or coping with the performance variability
caused by multiple tenants in a virtualized environment.

In this paper we introduce LINE, a tool for performance and
reliability analysis of software applications. LINE solves Layered
Queueing Network (LQN) models, a popular class of stochastic
models in software performance engineering, by setting up and
solving an associated system of ordinary differential equations.
A key differentiator of LINE compared to existing solvers for
LQNs is that LINE incorporates a model of the environment the
application operates in. This enables the modeling of reliability
and performance issues such as resource failures, server break-
downs and repairs, slow start-up times, resource interference due
to multi-tenancy, among others. This paper describes the LINE
tool, its support for performance and reliability modeling, and
illustrates its potential by comparing LINE predictions against
data obtained from a cloud deployment. We also illustrate the
applicability of LINE with a case study on reliability-aware
resource provisioning.

ABBREVIATIONS AND ACRONYMS
CCDF Complementary CDF
CDF Cumulative Distribution Function
LQN Layered Queueing Network
MC Markov chain
ODE Ordinary differential equation
PCM Palladio Component Model
PH Phase-type
RE Random environment
RT Response time
QN Queueing Network
SCV Squared coefficient of variation
SLO Service-level objective

NOTATION
P (·) Probability
E[·] Statistical expected value
Var(·) Variance

I. INTRODUCTION

Recent years have seen a sustained growth in the adoption
of cloud computing, a trend expected to continue in the

Juan F. Pérez is with the Department of Applied Mathematics
and Computer Science, Universidad del Rosario, Bogotá, Colombia, e-
mail:juanferna.perez@urosario.edu.co.

Giuliano Casale is with the Department of Computing, Imperial College
London, London, UK, e-mail:g.casale@imperial.ac.uk.

future [1]. Advantages of cloud deployments include ample
flexibility to manage resources, allowing service providers
to use only those that are needed to achieve service-level
objectives (SLOs), and to reduce the capital costs associated
with large computing infrastructures. However, opting for a
cloud-based deployment poses a number of novel challenges,
related to both reliability and performance. For example, as
the infrastructure is no longer under the control of the service
provider, the virtualization layer may introduce overheads that
cannot be directly managed, but that must be considered
when provisioning resources. Further, cloud computing offers
attractive deployment alternatives, such as spot instances,
which can be used at significantly lower costs, but that can
be lost whenever their spot price exceeds the bid price [2].

In spite of the additional uncertainty introduced by the cloud
offering, model-driven software engineering can help taking
provisioning decisions through models that explicitly capture
the inherent uncertainty in the application processing times,
and in the reliability of the deployment environment. A class of
models useful in capturing the complexity of modern software
systems are Layered Queueing Network models (LQNs) [3].
To fully exploit LQN models, multiple efforts have been put
forward to automate their generation from high-level software
specifications (e.g., UML MARTE [4], [5], PCM [6], [7],
CBML [8]). Further, efficient methods and tools exist to
quantitatively evaluate LQN models and compute relevant
performance and reliability measures, such as approximated
mean-value analysis methods adopted in the LQNS tool [9].

Although reliability extensions have been proposed for LQN
models [10], these focus on mean values of the service
metrics, and are appropriate for scenarios where failures and
repairs occur at a much slower time scale than the application
processing and response times. This therefore limits the use
of LQN models to tackle reliability-aware cloud resource
provisioning, where, for instance, the virtualized environment
can affect the application processing rates at very short time
scales [11]. In addition, while existing methods and tools
are effective in estimating mean performance metrics, the
lack of support for the analytic computation of response
time percentiles has been pointed out in the literature as a
limitation of LQN models for SLO assessment [12]. As cloud
applications typically serve different user classes, and support
a large number of request types, metrics such as response time
percentiles can therefore be needed at the user-type or request-
type level to effectively evaluate SLOs. Although response
time percentiles can be estimated by means of simulation, this
approach is very intensive in computational resources, limiting
the exploration of a large parameter space. A similar issue
is faced in decision-support systems used to decide optimal

2

deployments given a set of operational and service constraints.
Simulation models are not well-suited for this task because of
their heavy computational requirements, which are particularly
demanding when solving the non-linear integer optimization
problems underpinning resource provisioning.

In this paper we introduce LINE, a solver for LQN models
that tackles the above limitations. The main features of LINE
are as follows:

• LINE is a solver for LQN models that relies on a fluid
representation to efficiently analyze large-scale models.

• LINE explicitly models reliability issues by means of
a random environment, which is a stochastic model
of the operational environment the application evolves
in. This enables engineers to model the reliability and
performance of complex software systems in the presence
of resource failures, server breakdowns and repairs, start-
up delays, and interference due to multi-tenancy, an
increasingly important issue for cloud applications.

• In addition to mean performance metrics, LINE also
estimates the response-time distribution of the application
requests, which can be determined at the level of individ-
ual user or request classes. This enables the evaluation of
SLOs expressed as response-time percentiles.

• LINE can be directly used with the Palladio Bench tool
to analyze application models based on the Palladio
Component Model (PCM) paradigm.

An initial prototype of LINE was introduced in [13]. The
present paper generalizes the scope and approach of the
methodology by the following contributions:

• We introduce a generalized approach for reliability mod-
eling by means of random environments. Compared to
prior work [11], which focuses on random environments
with exponential holding times in each environmental
state, the random environments in LINE support Phase-
type (PH) holding times, therefore allowing the use, for
example, of complex failure distributions and rates.

• LINE supports processor-sharing servers and requests
belonging to multiple classes, and different user types,
as performance models are mapped onto multi-class and
multi-chain queueing network models. This provides an
innovation compared to current random environment the-
ory, which is significantly more restrictive as it focuses
on single-class models and first-come first-served queues
only [11]. Note that in the case of single-class workloads,
LINE also supports first-come first-served processors.

• LINE supports consider queueing stations with PH pro-
cessing times. Such PH distributions are unrelated to
those used for random environments and enable the
modelling of features such as high-variability in service
times, among others. Within this quite general setting, we
provide a formal proof of the convergence of the LINE
fluid model in the sense of Kurtz [14].

• We validate the results of LINE against the response times
observed from an e-commerce application deployed on
the cloud, as well as against simulation data.

• We illustrate the potential of LINE by incorporating it
into a reliability-aware resource provisioning strategy.

The reliability model of LINE is used to represent a
deployment based on spot instances, which can be lost
and recovered dynamically, affecting both the application
availability and performance. The provisioning problem is
posed as an integer optimization problem, which is solved
with simulated annealing, and where LINE evaluates
compliance with response times SLOs.

Compared to recent work that also considers the fluid method
to evaluate LQNs through PEPA models [15], LINE offers the
ability to analyze systems operating in a random environment,
supports multi-class processor-sharing resources, and com-
putes response time percentiles, which are notoriously chal-
lenging in the presence of preemptive scheduling disciplines.
At present LINE supports a subset of the features available in
LQN models. More details are provided in Section III.

The next section motivates the importance of estimating
the response time distribution by means of an example. Next,
Section III provides further details on the LINE tool, together
with background definitions, and Section IV describes the fluid
model underlying LINE. Section V compares the response
times obtained with LINE against those observed in a cloud-
deployed e-commerce application. The reliability analysis by
means of random environments is introduced in Section VI,
and experimental results are illustrated in Section VII, and
a report of computation times is given in Section VIII.
Section IX introduces a reliability-aware resource provisioning
approach based on LINE, and Section X concludes the paper.

II. MOTIVATING EXAMPLE:
APPROXIMATING PERCENTILES

One of the key features of LINE is its ability to estimate the
response time distribution, which can support the assessment
of percentile-based SLOs. In the introduction we mentioned
that the lack of support to estimate response time percentiles
has been marked as a limitation of current LQN solvers [12].
While simulation is a natural method to estimate response-
time distributions, it can be very time consuming, especially
when estimating the distribution tail [16]. This is worsened
when evaluating and optimizing the application quality at
design time, which typically requires the evaluation of a
large number of scenarios. Traditional analytical models, such
as Markov chains, are also able to estimate response-time
distributions, but their solution does not scale well with the
model size due to the well-known curse of dimensionality [17].
Instead, more tractable and efficient models, e.g. product-form
queueing networks, do not have tractable algorithms to com-
pute percentiles in multi-class networks of processor-sharing
resources [18]. A common approach [19], [20] to overcome
this problem is to use approximations, such as the Markov
and Chebyshev inequalities, to estimate the response-time
distribution from its mean and variance. These inequalities are
based on the Chebyshev bound, which, for any non-negative
random variable X , states

P (X ≥ ε) ≤ E[Xk]

εk
, (1)

where E[Xk] is the k-th non-centered moment of X , for
integer k, and ε > 0. The Markov inequality corresponds to the

3

t [s]
0 50 100

C
C

D
F

10-3

10-2

10-1

100

95%

99%

Exact
Markov
Chebyshev

(a) Exponential

t [s]
0 50 100

C
C

D
F

10-3

10-2

10-1

100

95%

99%

Exact
Markov
Chebyshev

(b) Hyper-exponential

Fig. 1. Approximating percentiles. Markov and Chebyshev inequalities

case k = 1, and therefore relies only on the mean E[X]. The
Chebyshev inequality is given by the case k = 2, requiring
knowledge of the second moment E[X2], or equivalently of
the mean E[X] and the variance Var(X) = E[X2]− E[X]2.
Replacing the inequality in (1) by an equality thus provides an
approximation of the Complementary Cumulative Distribution
Function (CCDF) P (X ≥ ε). These approximations however
can be very loose, as shown in Figure 1. There we consider two
probability distributions, exponential and hyper-exponential,
and depict the actual CCDF and the approximations derived
from the Markov and Chebyshev inequalities. While these in-
equalities provide effective bounds on the distribution, they can
be very loose, even for simple cases such as the exponential
distribution. As a result, provisioning decisions based on these
approximations can be very conservative, since the predicted
percentiles are much larger than the actual ones, which implies
larger deployment costs for the service provider. This example
highlights the importance of the analytical estimates of the
response time distribution provided by LINE.

III. THE LINE TOOL

LINE is an open-source software tool for the performance
and reliability analysis of software applications. It has been de-
veloped in MATLAB, and its source code and binaries can be
downloaded from [21]. LINE focuses on solving LQN models,
which have become a popular abstraction to model software
systems [5]–[8], [12], [22], [23]. LINE is particularly simple
to use in combination with the Palladio Bench tool [6], a
software-engineering tool based on the PCM paradigm. PCMs
allow the description of key characteristics of the application
components and the resources where these are deployed, such
as processing speeds and mean times to failure, making them
well-suited for performance and reliability analysis. Once an
application has been modeled as a PCM, the LINE solver can
be called directly from Palladio Bench. LINE then estimates
relevant service metrics such as throughput or response times1

To analyze a software application modeled as a PCM,
it is first necessary to transform the PCM into an LQN
model. To this end Palladio Bench implements the PCM2LQN
transformation [7], which generates an LQN model of the
application in the XML format used by the LQNS solver [9].

1We must highlight that, to use LINE in combination with Palladio Bench,
it is not necessary to have a MATLAB license, as the LINE binaries can be
executed by means of the MATLAB Compiler Runtime, a royalty-free set of
libraries for the execution of compiled MATLAB applications.

Workload task

Web server task

Database task

WS
Proc. DB

Proc.

Logout Login

OR

0.9 0.1

OR

Query

Fig. 2. LQN example

This LQN model is then parsed by LINE to generate and solve
its performance model, as described in the next sections.

A. Layered queueing networks

An LQN [3] is composed of tasks, which represent the
software servers that are deployed on processors. Both tasks
and processors have a multiplicity attribute, which can be used
to model multi-threaded applications deployed on multi-core
servers. They also have a scheduling policy to define how the
incoming requests are served. A task exposes a set of services,
called entries, which can be called from other tasks. A simple
example is shown in Figure 2, where the Web Server task,
deployed on the Web Server Processor, exposes two entries:
Logout and Login. Each entry has a set of activities, which are
executed according to an activity execution graph. An activity
executes by posing a demand on the processor it is deployed
on, or by generating a call to an entry in a different task.

Activities can execute sequentially, probabilistically, or in
parallel. Probabilistic execution is implemented via a proba-
bilistic OR node, which has a number of outgoing vertices,
each with an associated probability of executing the activities
along that vertex. This is illustrated in Figure 2, where the
Login entry executes by first calling the Query entry in the
Database task, and then proceeds with a probabilistic OR,
executing either of two activities, with probabilities 0.9 and
0.1. Similarly, parallel execution is implemented via fork-join
nodes, where the fork node enables the parallel execution of
the activities, and the join node is executed only after all
previous activities have been completed. The call to an entry
can be synchronous or asynchronous, depending on whether
the caller processor is blocked or not until the called entry
finishes.

The application users are modeled by a reference task that
exposes no entries, but has a set of task-level activities that
specify how the services exposed by other tasks are called
by the users. The Workload task in Figure 2 is a reference
task that sequentially calls the two entries in the Web Server
task. While these are the basic components of an LQN, a
number of extensions have been added to the framework,
as surveyed in [3]. These extensions include approximations
for non-exponential service times, two-phase services to free
the caller after a first service phase, and quorum consensus
where an activity is executed after k out of the n predecessor

4

activities have been completed. LINE focuses on probabilistic
OR nodes, but not fork-and-join nodes, with the exception
of fork-and-join of local activities that can be represented
using superposition of phase-type distributions. The extension
to support general fork-and-join models is left for future work.

B. From LQN to fluid QN models

In Section IV we introduce the LINE performance model,
which is a fluid Queueing Network (QN) model to analyze
LQNs. The fluid QN model is built from the LQN description
by appropriately matching the LQN tasks, processors, entries,
and activities, into processing stations, job classes, and job
demands on the processing stations. While this transformation
is described in [13], here we provide an overview. Each
reference task in the LQN, which models a set of application
users, is transformed into a QN chain of users. This chain
holds a set of classes among which users in the chain can
switch probabilistically, but they are not allowed to switch to
classes in other chains. The number of users in the chain is
given by the multiplicity of the reference task, and for each
chain we also create a delay station in the QN, where the
users undergo a think time, as defined by the reference task.
The example in Figure 2 has a single reference task, which
defines a single chain, a delay station, and an associated mean
think time.

The remaining tasks are divided in two groups, depending
on whether or not they hold activities that pose effective
demands on the processor where the task is deployed. When
such resource-demanding activities are present, the task and
associated processor are mapped into a station in the QN
model, with as many servers as indicated by the task multiplic-
ity. The processor also defines a scheduling policy, which is
used to define the policy at the QN station. Having defined the
stations and user chains in the QN model, the transformation
then creates the routing links among stations, for each user
chain, by following the sequence of calls starting from each
reference task.

In addition to simply routing users in one chain across
the QN stations, the transformation also determines class-
switching probabilities. The main purpose of the class-
switching feature is to enable the QN model to capture the
fact that multiple visits to the same station may be necessary
to serve a request, and each of these visits may require a
different execution time. For instance, in Figure 2 executing
the Login service entails processing at the web server station
before and after retrieving data from the database. To allow
each of these executions to have a different processing time,
we switch the request class just before the second visit to
the web server station. While the stationary analysis of mean
metrics is not affected by class-switching, the response-time
distributions and the transient metrics obtained with LINE
rely on this feature to provide accurate results. Finally, the
fluid QN model considered in this paper is more general than
the one introduced in [13] in that it considers PH-distributed
processing times, and a random environment for reliability
modeling, as we describe in Section III-D.

C. Current Limitations

The focus of LINE is on delivering novel performance and
reliability analysis techniques for LQN analysis. These include
in particular random environments, response time percentiles
and PH distributions, which we show later to be useful for
reliability-aware provisioning. Such features are novel in the
LQN space and require more advanced solution algorithms
compared to mean-value analysis, which is widespread for
solving LQNs but yet does not seem amenable to analyze
these features. Therefore, the initial release of LINE considers
a simplified LQN model that is amenable to analysis and
application of Kurtz’s theorem [14], but which for ease of
implementation neglects some features supported by existing
LQN solvers such as LQNS. These include processors with
FCFS scheduling, fork-join nodes that execute on multiple
processors, and forwarding calls. Still, LINE supports key
features of LQNs, for example by allowing both synchronous
and asynchronous calls.

We believe that LINE could be extended to encompass most
of the features that are currently missing. One potential limita-
tion is the combination of synchronous calls with simultaneous
resource contention, arising for example when a synchronous
call blocks the calling processor until completion. Our initial
analysis reveals that the generalization of the fluid equations to
this case leads to potential violation of the Lipschitz continuity
assumptions underpinning Kurtz’s theorem. Such degenerate
cases corresponds to situations where one or more resources
are continuously blocked. While the practical relevance of such
degenerate cases appears limited, additional work is needed
to understand the convergence properties of the associated
stochastic processes in the presence of such degeneracies.

D. PH distributions and Random environments

The LINE performance and reliability model exploits PH
distributions to represent fairly general times, beyond the capa-
bilities of the exponential distribution. In fact, PH distributions
have been shown to be dense among all distributions with non-
negative support [24]. A continuous-time PH distribution is the
time to absorption in a continuous-time Markov chain (MC)
that has m transient states and one absorbing state. The MC
generator matrix can thus be written as

Q =

[
T t
0 0

]
,

where T is the sub-generator matrix that corresponds to the
transient states, and the vector t = −Te, with e a column
vector of ones, holds the absorption rates in each transient
state. Similarly, the initial state in this MC is selected ac-
cording to the row probability vector [α α0], where αi holds
the probability that the MC starts in transient state i, and
α0 = 1−αe. The PH distribution derived from this MC is said
to have parameters (m,α, T). Examples of PH distributions
are included in Appendix C for reference.

PH distributions play two key roles in the LINE reliability
and performance model. First, as discussed in Section IV,
LINE uses PH distributions to characterize the request process-
ing times. Second, as described in Section VI, LINE introduces

5

TABLE I
QN NOTATION

Parameter Definition
i, j Station indexes
r, s Job class indexes
a, b Station indexes
e, h Environmental stage indexes
M Number of stations
R Number of classes
N Number of users
P Routing probability matrix
P r,s
i,j Probability that a class-r job that finishes service at

station i proceeds to station j as a class-s job
ni Number of servers at station i

Service-time distribution of class-r jobs in station i
mi,r Number of phases
αi,r Initial probability vector
T i,r Sub-generator matrix
T i,r
a,b Transition rate from phase a to b. Entry (a, b) of T i,r

Xi,r,a(t) Number of class-r jobs in service phase a in station i
at time t

Xi(t) Total number of jobs in station i at time t
x(t) Fluid solution approximating X(t)

x, y States visited by X(t) or x(t)

PH distributions to model the holding times in each of the
environmental stages that compose a random environment. To
incorporate these features in the standard LQN model, we
have developed an XML extension. This enables the definition
of PH distributions, which are linked to the LQN Activities
that use such distribution as execution times. It also enables
the definition of random environments, and how the value of
certain LQN parameters change according to the environment.
More details can be found on the LINE documentation [21].

IV. THE LINE FLUID PERFORMANCE MODEL

The LINE performance model is a closed QN model
composed of multi-server processor-sharing (PS) and delay
stations, where the processing times are PH distributed, and
the jobs can belong to multiple classes and switch their class
after leaving a station. Closed models have a long history in the
performance analysis of computer systems [25], [26], as they
can model not only applications accessed by a set of users,
but also finite resources such as database connection pools and
thread pools. To analyze this QN model we introduce a fluid
approximation based on a set of ordinary differential equations
(ODE), which provides a deterministic approximation method
to the expected sample path of the system state. Although
approximate, the fluid model has the advantage of avoiding
the state-space explosion encountered in Markovian models.
Further, we rely on [14] to show that the fluid model becomes
exact when the number of jobs in the system is large. The
notation introduced in this section is summarized in Table I.

A. The QN model

We consider a closed QN with a total of N jobs circulating
among M stations. Each job belongs to one of R classes at any
given point in time, but it may switch its class when leaving

any station. The processing time of a class-r job in station i
is PH-distributed with parameters (mi,r, αi,r, T i,r). The state
of the QN at time t is described by X(t) = {Xi,r,a(t), 1 ≤
a ≤ mi,r, 1 ≤ i ≤ M, 1 ≤ r ≤ R}, where Xi,r,a(t) is
the number of class-r jobs in service phase a in station i at
time t. From here on, we use the index (i, r, a) to refer to
the entry of any vector that corresponds to class-r jobs in
service-phase a in station i. Two types of events may modify
the system state: a job service completion, which makes the
job move to a new station j where it starts service in phase b
with a possible switch to class s; or a service phase transition
without service completion, which only alters the processing
phase from a to b. Letting x be an arbitrary state visited by
X(t) and ei,r,a the zero vector with a one in entry (i, r, a),
we see that the first type of event causes the state to jump
from state x to state x + ej,s,b − ei,r,a, as one class-r job in
phase a is removed from station i and added to station j as
a class-s job in service-phase b. Similarly, the second event
type causes a jump to state x + ei,r,b − ei,r,a.

We assume that station i consists of ni servers that process
incoming jobs in a PS fashion. To handle the PS multi-server
case we rely on the following abstraction. If at most ni jobs
are present in station i, each of them is assigned to a different
processor, otherwise the jobs are assumed to share a super-
processor with ni times the capacity of a single processor.
This implicitly models the re-allocation of jobs across servers
to best use their capacity. As a result, the transition rates
associated to station i depend on the total number of jobs
present at that station xi =

∑R
r=1

∑mi,r

a=1 xi,r,a. On the one
hand, if xi ≤ ni, the transition rates associated to class-
r jobs in phase a are proportional to xi,r,a, as each job is
assigned to a separate processor. For instance, if there are
ni = 8 processors and xi = 4 jobs in process, each job is
assumed to be in a separate processor, while four processors
remain idle. On the other hand, if xi ≥ ni, the corresponding
transition rates are proportional to xi,r,a

xi
ni, since in this case

the class-r jobs in phase a receive a fraction xi,r,a

xi
of the

ni servers available. In the example above, with ni = 8
processors but with xi = 10 jobs, all the jobs are assumed to
share the processor, each receiving the equivalent of 8 tenths
of a processor. We can summarize these two alternatives into
the expression

g(x, i, a, r) =
xi,r,a
xi

min {ni, xi} . (2)

The service completion rates in state x is thus

f c(x, ej,s,b − ei,r,a) = ti,ra αj,s
b P r,s

i,j

xi,r,a
xi

min {ni, xi} , (3)

where we capture that a class-r job in phase a finishes service
in station i with rate ti,ra g(x, i, a, r), and it is routed to station
j as a class-s job with probability P r,s

i,j , where it starts service
in phase b with probability αj,s

b . Similarly, the rate associated
with a service phase transition is given by

fn(x, ei,r,b − ei,r,a) = T i,r
a,b

xi,r,a
xi

min {ni, xi} , (4)

where it is sufficient to consider the transition rate from service
phase a to phase b, T i,r

a,b . Thus f c(·) captures completion rates,

6

V servers Delay

…

Fig. 3. Example 1 – Queueing network model. The queue adopts a processor
sharing service discipline.

whereas fn(·) captures service rates that do not immediately
lead to completion. Also notice that by assigning ni = N
servers to a station, it becomes a delay node, since a server
is always available for every job. For later reference, we
will use f c(x, i, j, r, s, a, b) and fn(x, i, r, a, b) as shorthand
for f c(x, ej,s,b−ei,r,a) and fn(x, ei,r,b−ei,r,a), respectively.

Example 1. To illustrate the previous description consider
the system in Figure 3, with R = 2 job classes, a delay and
a processing station, the latter one consisting of n2 = S
servers. Assume that class-r jobs face an exponentially-
distributed holding time in the delay station, with mean 1/µr.
For simplicity we assume that jobs do not switch class, thus
P 1,1

1,2 = P 1,1
2,1 = P 2,2

1,2 = P 2,2
2,1 = 1, and all other entries in

P are zero. Thus, letting the class-1 processing times follow
an Erlang(3, γ) distribution as in (13), the transition rate
associated to a class-1 service phase transition from phase 2
to phase 3, in station 2, is

fn(x, e2,1,3 − e2,1,2) = T 2,1
2,3

x2,1,2

x2
min {S, x2} ,

= γ
x2,1,2

x2
min {S, x2} .

Similarly, we let the processing times of class-2 jobs follow
a hyper-exponential distribution with parameters as in (14).
Thus, the transition rates associated with a class-2 service
completion, in station 2 and service phase 1, is

f c(x, e1,2,1 − e2,2,1) = t2,21 α1,2
1 P 2,2

2,1

x2,2,1

x2
min {S, x2} ,

= γ1
x2,2,1

x2
min {S, x2} ,

since α1,2
1 = 1 due to the exponential assumption in the delay

node. Further, assume S = 2 servers and x2 = 3 jobs in
the processing station, which correspond to one class-1 job
(x2,1,2 = 1) and two class-2 jobs (x2,2,1 = 2). The transition
rates above thus become

fn(x, e2,1,3 − e2,1,2) = γ
1

3
2,

f c(x, e1,2,1 − e2,2,1) = γ1
2

3
2,

displaying how the two processors are shared among the three
jobs present at station 2.

B. The fluid model

To analyze the QN model introduced in the previous section,
we consider a sequence of QN models, indexed by v, such
that when v → ∞, their sample paths tend to that of an
ODE system, which can be used to approximate the transient

behavior of the original QN model. Let {Xv(t)}v∈N+
be a

sequence of QN models such that X1(t) = X(t) is the
QN model defined in the previous section, and Xv(t) for
v ≥ 2 is defined as X1(t) but with a population of vN
jobs and vni servers in station i. As a result, we have a
sequence of QN models {X1(t), X2(t), . . . }, where the model
Xv(t) has v times more jobs and servers in each station
than the original model X(t). By proportionally scaling both
jobs and servers we keep the expected load in each station
fixed, and we can rely on the results in [14] to show that,
when v → ∞, the asymptotic behavior of the system state
can be described by an ODE system. For a recent survey on
ODE approximations of this kind see [27]. The state space of
Xv(t) is {x ∈ Nm̄ :

∑M
i=1

∑R
r=1

∑mi,r

a=1 xi,r,a = vN}, where
m̄ =

∏M
i=1

∏R
r=1m

i,r. Since we assume that the number
of servers scales proportionally with the population size, the
number of servers in station i, for any QN model Xv(t), can
be written as a fraction 0 < ci ≤ 1 of the total number of
jobs. Thus, the number of servers in station i in the QN model
Xv(t) is vni = civN = ci

∑M
h=1

∑R
r=1

∑mi,r

d=1 xh,r,a, for any
state x in the state space of Xv(t).

The transition rates of Xv(t) in state x associated to service
completions can thus be written as

f cv(x, i, j, r, s, a, b)

= vti,ra αj,s
b P r,s

i,j

xi,r,a

v
xi

v

min

civ
M∑
h=1

R∑
r=1

mi,r∑
d=1

xh,r,a,
xi
v

 ,

= vf c1(x/v, i, j, r, s, a, b) = vf c(x/v, i, j, r, s, a, b).

Similarly, fnv (x, i, r, a, b) = vfn(x/v, i, r, a, b). We thus ob-
tain that the transition rates of the system Xv(t) in state x
can be written as v times the rates of the original system
X1(t) in state x/v. This property of the transition rates
is called density-dependence. As a result, and provided that
the rate functions f c(x, i, j, r, s, a, b) and fn(x, i, r, a, b) are
continuous for all x ∈ Rm̄, the sequence {Xv(t)}v∈N+ is
a density-dependent family of processes [14]. To show that
these rate functions are Lipschitz continuous we notice that
both T i,r

a,b and ti,ra are bounded above by the largest exit rate
in the sub-generator matrix T i,r, which we assume to be finite,
λi,r = maxa{−T i,r

a,a} < ∞. Therefore f c(x, i, j, r, s, a, b) ≤
λi,rg(x, i, r, a) and fn(x, i, r, a, b) ≤ λi,rg(x, i, r, a), with g
as defined in (2). The Lipschitz continuity of the rate functions
thus follows from the following lemma, the proof of which is
provided in the Appendix.

Lemma 1. The functions g(x, i, r, a) in (2) are Lipschitz
continuous in x ∈ Rm̄.

Theorem 3.1 in [14] shows that, under certain conditions,
the sample paths of the normalized sequence {Xv(t)/v}v∈N+

converge in probability to a deterministic ODE system. For

7

any x ∈ Rm̄, let F (x) be the drift of X(t) in state x, that is

F (x) =

M∑
i,j=1

R∑
r,s=1

mi,r∑
a,b=1

(ej,s,b − ei,r,a)f c(x, i, j, r, s, a, b)

+

M∑
i=1

R∑
r=1

mi,r∑
a,b=1

(ei,r,b − ei,r,a)fn(x, i, r, a, b), (5)

and let x(t) ∈ Rm̄ be the state of a deterministic system that
evolves according to the ODE

dx(t)

dt
= F (x(t)), t ≥ 0, (6)

and has initial state x0. Using the results in [14], we prove
the following theorem in the Appendix.

Theorem 1. The sequence of QNs {Xv(t)}v∈N+
converges in

the sense of (9) to the solution of the ODE (6).

Informally, the implication of Theorem 1 is that as the
parameter v grows, the MC becomes increasingly similar to
the solution of the ODE (6). Since v is a parameter that scales
the number of jobs and servers in the system, Theorem 1 states
that a large-scale LQN with many jobs and many servers will
be approximated in an increasingly accurate manner by the
ODE trajectory. It is of paramount importance to notice that
this scaling preserves the total server capacity per job, thus the
scaling is often a reasonable approximation also for systems
where v is slightly greater than unity.

C. Response time distribution

An advantage of the fluid model is that it allows us to
approximate the response time distribution of requests, which
is important for assessing SLOs. We adopt the approach
proposed in [28] for PEPA models to the computation of the
distribution in the class of models supported by LINE. To do
so we assume an arbitrary initial state x(0) is provided and
introduce a tagged class R+ 1. To estimate the response time
distribution of class-r jobs in station i we set the service time
distribution of the new class R+1 to be equal to that of class r,
and define a new initial fluid x̄(0) that is equal to x(0) except
for x̄R+1,i,a(0) = xr,i,a(0) and x̄r,i,a(0) = 0. This means that
all the fluid in class r and station i is moved to the tagged
class. Next we set the routing probabilities of the tagged class
as P i,j

R+1,s = P i,j
r,s , thus allowing the fluid from the tagged

class R+ 1 to move as if it was class-r fluid, never returning
to class R + 1. The resulting tagged class is a transient class
that has zero fluid once all the initial fluid has been drained
from station i.

Let y(t) keep track of the station visited by a job of the
tagged class at time t, thus y(t) ∈ {1, . . . ,M} for t ≥ 0.
Let Si be the random variable describing the response time
of the jobs in the tagged class in station i, and let Φi be its
cumulative distribution function (CDF). For any t ≥ 0, the
event {y(t) = i|y(0) = i} is equivalent to {Si > t}, thus we
can state

Φi(t) = P (Si ≤ t) = 1− P (y(t) = i|y(0) = i) .

The last term can also be written as an expected value in terms
of the process X(t), extended with the tagged class, as

P (y(t) = i| y(0) = i) =
E[Xi,R+1(t)]− E[Xi,R+1(0)]

E[Xi,R+1(0)]
,

where Xi,R+1(t) is the total number of tagged jobs in station i,
i.e., Xi,R+1(t) =

∑mi,R+1

a=1 Xi,R+1,a(t). As in [28], we make
use of the fluid solution x(t) to approximate the expected
value of X(t), such that

Φi(t) = 1− E[Xi,R+1(t)]− E[Xi,R+1(0)]

E[Xi,R+1(0)]

≈ 1− xi,R+1(t)− x̄i,R+1(0)

x̄i,R+1(0)
.

The probability density function φi(·) can be obtained as the
derivative of Φi(·), thus

φi(t) ≈ −
1

x̄i,R+1(0)

dxi,R+1(t)

dt
= −Fi,R+1(x(t))

x̄i,R+1(0)
,

where F (·) is the drift defined in (5).
In the previous discussion we assumed a given initial

fluid x(0). To approximate the steady-state response time
distribution we can let the ODE evolve until the rate of change
vanishes and use the resulting vector as the required x(0).
Although we have not found an instance where the ODE fails
to converge to a fixed point, we do not have a proof that there
is a unique attractor for the ODE, and the convergence result
on which we rely is only valid for a finite T . However, for
the analysis with blending, as discussed in Section VI, it is
sufficient to determine the value of x(T) for a finite T , which
is then used in the subsequent iterations of the algorithm.

V. EVALUATING RESPONSE TIME PERCENTILES

To illustrate the response time predictions obtained with
LINE, we make use of Apache OFBiz2, an open-source enter-
prise framework, which includes an e-commerce application
that we deploy on the cloud using Amazon EC23. Once
deployed, we use the OFBench tool [29] to generate traffic
from a set of emulated users, also running on cloud instances.
The application, which is composed of an application and a
database server, is deployed on a c1.xlarge virtual machine
that features 8 cores, and serves all the traffic generated by N
emulated users, chosen in the range N = [10, 90]. The users
access the application by submitting a sequence of requests
during a single session. Between the submission of consecutive
requests, and between the end and the start of a session, the
users undergo a think time.

To determine the processing time distributions we collect
monitoring data from the OFBiz log files, which gather arrival
and departures timestamps at request level. Relying on this
dataset, we use the FMLPS method in [30] to estimate the
mean processing times. In addition, we estimate the squared
coefficient of variation (SCV) of the processing times using
the BL method in [30]. That is, we use BL to obtain estimates
for the service demand samples from response time samples.

2http://ofbiz.apache.org/
3http://aws.amazon.com/

8

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Time [s]

S
es

si
on

 R
es

po
ns

e
T

im
e

C
D

F

Trace
Sim
LINE
Markov
Chebyshev

(a) RT CDF - N = 50

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Time [s]

S
es

si
on

 R
es

po
ns

e
T

im
e

C
D

F

Trace
Sim
LINE
Markov
Chebyshev

(b) RT CDF - N = 70

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Time [s]

S
es

si
on

 R
es

po
ns

e
T

im
e

C
D

F

Trace
Sim
LINE
Markov
Chebyshev

(c) RT CDF - N = 90

Time [s]
0 5 10 15 20

S
es

si
on

 R
es

po
ns

e
T

im
e

C
D

F

0

0.2

0.4

0.6

0.8

1

Sim-1
Sim-3
Sim-5
LINE

(d) RT CDF - N=130

Fig. 4. Session Response Time CDF

TABLE II
OFBIZ REQUESTS

Request Mean [s] SCV Request Mean [s] SCV

Main 0.193 0.065 QuickAdd 0.156 0.266
Logout 0.039 1.743 AddToCart 0.702 0.329

CheckLogin 0.121 1.751 CheckOutOpts 0.236 0.641
Login 0.049 0.483 OrderHistory 0.096 0.168

By calculating the mean and variance of these samples, we
readily obtain the SCV. Notice that, although accurate, these
methods remain approximate in estimating the application
effective CPU consumption (see [30] for more details). As
illustrated in Table II, there are 8 different request types
executed by the clients accessing the application, each of
which has different statistical characteristics. In particular, we
observe that the SCV is not equal to 1, as assumed by the
exponential distribution, a feature that can be captured by LINE
through the use of PH distributions. We thus use standard
methods [31] to match the mean and SCV of the processing
times with Erlang and hyper-exponential distributions, which
belong to the set of PH distributions.

We have conducted experiments with a number of clients
between 10 and 90, which generate an average server uti-
lization between 6% and 56%. Notice that in a production
deployment, a large number of instances are deployed and
the requests are assigned according to a load balancer, such
that each available resource receives a fraction of the total
number of users. We compare the response times predicted
by LINE against the times observed in the trace, as well
as against results obtained by simulation and the Markov
and Chebyshev inequalities. The simulation model considers
the QN model extracted from the LQN model, described in
Section IV-A, without the approximations introduced by the
LINE fluid solution. This model is built and run in the JMT
simulation tool [32]. Figures 4(a) to (c) depict the results for
the cases with 50, 70, and 90 users, focusing on the session
response time (RT) CDF. Under 50 users, we observe a clear
match between LINE and simulation, both of which closely
follow the trace CDF. For 70 and 90 users, both LINE and
simulation are also very close to the trace CDF, although
the errors are larger. This behavior is confirmed by Table III,
which includes the relative errors on the mean, the 95th and
99th percentiles, and the mean error on the CDF evaluated at

TABLE III
LINE RELATIVE ERRORS

N errMean errCDF err95 err99

10 2% 8% 13% 14%
30 1% 13% 9% 15%
50 1% 13% 9% 15%
70 3% 9% 7% 8%
90 11% 11% 11% 13%

TABLE IV
RT 95TH PERCENTILE

N Trace Sim LINE Markov Chebyshev

10 2.45 2.76 2.76 41.07 9.36
30 2.70 2.93 2.93 38.07 8.89
50 3.12 3.42 3.42 42.62 10.05
70 4.15 5.10 4.45 62.72 14.83
90 5.23 4.86 4.68 61.18 14.39

all the percentiles. While the mean is almost perfectly matched
for up to 70 users, the error is larger for 90 users. Overall, the
errors in mean, CDF, and percentiles are at most 15%.

As mentioned in Section II, a common approach [19], [20]
to approximate a CDF is to use the mean and variance of
the associated random variable, together with the Markov and
Chebyshev inequalities. We have thus used these inequalities
to approximate the RT CDF, using the mean and variance ob-
tained from simulation, which have relatively small estimation
errors. Figures 4(a) to (c) show how these two approximations
compare with the trace CDF. Clearly, both approximations
are far from the actual RT CDF, differing by up to 1 and 2
orders of magnitude for the higher percentiles. Table IV shows
the specific values for the 95th percentile obtained with the
different methods, showing large errors for the Markov and
Chebyshev approximations. For instance, the 95th percentile
estimated by the Markov and Chebyshev inequalities are 12
and 3 times larger than the one observed. The results obtained
with LINE offer a much better approximation of the RT CDF.
Table V presents similar results, but in this case we use the
mean demands for the N = 10, 90 cases to parameterize all
the models. We have observed that the mean demands in this
case increase with the number of users. Thus, we used the
measurements from the N = 10, 90 cases to approximate
the demands for the other cases by means of a simple linear

9

TABLE V
RT 95TH PERCENTILE - PREDICTED FROM N = 10, 90

N Trace Sim LINE Markov Chebyshev

10 2.45 2.76 2.76 41.11 9.37
30 2.70 3.53 3.52 45.79 10.69
50 3.12 4.02 4.04 50.30 11.85
70 4.15 4.51 4.52 55.14 13.07
90 5.23 4.83 4.68 61.07 14.34

interpolation, and use these demands to predict the response
times for the other scenarios. While the errors are larger than
in Table IV, LINE offers similar predictions as simulation, and
much closer to the observed response times than the Markov
and Chebyshev inequalities.

We now compare the results of LINE with those of a
simulation model. Our goal here, compared to the previous
experiments, is to explore a case where the system perfor-
mance is not known by measurements, and we want to see if
LINE can offer the same prediction quality as simulation. We
first observe that the differences between the simulation and
LINE are very small, below 1%, when the number of users is
up to 50, as illustrated in Figure 4(a). Increasing the number
of users, and thus the utilization, causes larger errors, which
are however overcome as the scale of the system increases.
Figure 4(d) illustrates this for the case with 130 users, which
generate a utilization of 82%. The figure depicts the CDF
estimated by LINE, and the ones obtained with simulation
where a scale S is indicated by the label Sim-S. This means
that both the number of users and servers are scaled by a
factor of S. We observe how the difference between the fluid
and the simulation reduces as the scale grows. In fact, the
mean relative error in the 95-th percentile is 28% for the
system without scaling, and this decreases to 6% and 2%
when the system is scaled by a factor of 3 and 5, respectively.
LINE therefore offers better results for systems under low and
medium loads, as well as for systems with a large number
of users and servers, which are the conditions expected for
production cloud applications.

VI. RELIABILITY ANALYSIS

While the performance model introduced in the previous
sections provides an efficient method to analyze large LQN
models, it lacks support for reliability analysis. We now
introduce this capability by means of an environment that
generates faults and reliability issues. Consider for example
the classical problem of modeling a system with servers that
may experience breakdowns at random times followed by
repairs. LINE supports the modeling of these systems through
the notion of random environment (RE). An RE is composed
of E stages, each representing a possible condition of the
environment. For example, in a model with breakdowns and
repairs, stages may be used to count the number of faulty
servers waiting for a repair.

A. Definitions
We assume the RE evolves as follows. The holding time in

stage e follows a PH distribution with parameters (ne, βe, Ve),

and let ve = −Vee be the vector of absorption rates, where
e is a column vector of ones. After a visit to stage e, the
environment moves to stage h with probability de,h, such
that

∑
h6=e de,h = 1. We can therefore describe the RE as a

continuous-time MC with a state space composed of E levels,
where level e has ne states. The generator matrix Q of this
MC can be partitioned according to the state-space, such that
the sub-matrix Qe,h holds the transition rates from level e to
level h, or equivalently from stage e to stage h. The sub-matrix
Qe,h, for h 6= e, is thus given by

Qe,h = vede,hβh,

combining the exit rates from stage e (ve) with the probability
that the next stage visited is h (de,h), and the initial probability
distribution of the phases in stage h (βh). Within stage e, the
transition rates are given by Qe,e = Ve. Solving the system
πQ = 0, πe = 1, we obtain the stationary distribution π of
the MC, which can be partitioned according to the state space
into sub-vectors πe corresponding to each stage.

LINE accepts the specification of the input parameters of the
model listed in Table I as a function of the current stage e in
the RE. This complicates the analysis since the system is now
described by a set of E systems of ODEs (6), one for each
possible stage in the RE, raising the question on how to jointly
use these descriptions to analyze the system. In LINE we
generalize the blending approach in [33], which has the ability
to consider REs that evolve at different time-scales, including
the time-scale at which requests are processed. As discussed
in [33], this differs from methods based on decomposition
techniques, which require the RE to evolve at a much larger or
smaller rate than the requests’ processing rates. The blending
method makes use of a fluid model to track the evolution of
the system state xe(t) when the RE is in stage e. This means
that the system starts in state xe(0) and evolves with drift
Fe(·) according to (6) until a time T when an environmental
transition from stage e to stage h 6= e occurs. The system then
starts in state xh(0) and evolves with a different drift Fh(·)
until a new transition occurs. The initial state xh(0) is defined
from the terminal state xe(T) by applying a Reset matrix
Re,h, as xh(0) = xe(T)Re,h. The Reset matrix is a stochastic
matrix that defines how the jobs must be reallocated when
an environmental transition occurs. For instance, as shown in
Section VII, if the PH representation of the processing times
is associated with a set of consecutive processing phases, an
environmental transition can cause the current jobs in process
in any phase to re-start in phase one due to a failure event
associated with the environmental transition.
Example 1 (cont). We define a random environment for Ex-
ample 1, described in Section IV. Let the random environment
be composed of 3 stages, as in Figure 5, where in stage e there
are e servers working in station 2. This random environment
can be used to model potential server failures. For instance,
the holding time (n2, β2, V2) captures the time until the next
failure of either server when both servers are running. The MC
that models the random environment is therefore

Q =

 V0 v0β1 0
d1,0v0β0 V1 d1,2v1β2

0 v2β1 V2

 .

10

S=2

(n2, b2, V2)

S=1

(n1, b1, V1)

S=0

(n0, b0, V0)

d1,0

d1,2

Fig. 5. Random environment example

Here we assumed d0,1 = d2,1 = 1, thus only one server fails
or is repaired at any time.

B. The blending method

The blending algorithm introduced in [33] approximates
the steady-state distribution of the system state by cyclically
considering the evolution of the system in each environmental
stage, and the transitions triggered by a change in the en-
vironmental stage. Here we extend this method to consider
environmental stages with PH holding times, instead of the
exponential assumption considered in [33]. We also combine
it with the LINE model, which is more general than the single-
class first-come first-served model in [33]. A a result, when the
environment jumps from stage e to stage h, the reset matrix
Re,h must keep track of the number of jobs of each type in
each station and service phase, and how these are affected by
the environmental stage transition. For instance, if service is
composed of consecutive phases, all jobs of a certain class in
a given station can be forced to re-start service in the first
phase, reflecting a loss of information caused by a server
failure. Therefore, due to the multi-class PS scheduling, the
blending method considered here offers support for different
reset policies depending on the job class. Let x0

e(0) be the
initial system state in stage e, where the exponent k = 0
counts the number of environmental transitions that have
occurred. We obtain x0

e(t) as the solution of (6), with drift
Fe(·) and initial state x0

e(0), for t from zero to the time of
the first environmental transition. As the holding times in the
environmental stages follow a PH distribution, the probability
density that a transition occurs at time t, given that the current
stage is e, is βe exp(−Vet)ve. Thus the distribution of the
system state just before the first environmental transition is∫∞

0
x0
e(t)βe exp(−Vet)vedt. The initial state in stage h after

the first environmental transition is thus given by

x1
h(0) =

E∑
e=1,e6=h

pe,h

∫ ∞
0

x0
e(t)βe exp(−Vet)vedtRe,h,

where pe,h is the probability that, given that the current stage
is h, the last stage visited was e. The Reset matrix Re,h is
used to map the final state in stage e into the initial state in
stage h. The blending method is based on this iteration, but
replaces pe,h with a stationary version p̃e,h defined as

p̃e,h =
πevede,h∑E

l=1,l 6=e πlv
ldl,h

,

where πe is the stationary probability vector associated to stage
e. The blending algorithm therefore iteratively computes

xk+1
h (0) =

E∑
e=1,e6=h

p̃e,h

∫ ∞
0

xk
e(t)βe exp(−Vet)vedtRe,h,

for every stage e, until the difference between two consecutive
iterations is smaller than a threshold ε close to zero. If the
algorithm terminates after k̂ iterations, the blending approxi-
mation of the expected system state in the long run, given it
is in stage e, is

∫∞
0

xk̂
e(t)βe exp(Vet)vedt.

VII. CAPTURING CLOUD VARIABILITY WITH RANDOM
ENVIRONMENTS

Cloud computing offers great flexibility to deploy software
applications, as the user pays only for the resources used.
This flexibility is achieved thanks to virtualized environments,
where applications run in virtual machines (VMs) that share
the same hardware. Although many efforts are made to prevent
interference across VMs, it is unavoidable that high resource
consumption by one VM affects neighboring VMs. In this
section we make use of the RE model in LINE to capture this
variability and its impact on the response times offered by an
application deployed on Cloud resources. We now describe the
experimental setup and compare the response times predicted
by LINE against measurements and alternative methods.

A. Experimental Setup

To emulate the variability observed in the Cloud we make
use of the OFBiz application described in Section V, which
we deploy on our private Cloud, running Open Nebula version
4.10 [34]. As in Section V we deploy both the OFBiz
application and database servers in a single VM (4 virtual
cores, 8GB memory) running under a KVM hypervisor. Each
virtual core is pinned on a physical core of an Intel(R)
Xeon(R) CPU E5-2470 running at 2.30GHz. The workload is
generated with the OFBench tool [29] using clients running on
separate VMs, deployed on separate servers and connected via
a Gigabit Ethernet switch to the OFBiz VM. To emulate Cloud
variability we employ the stress utility at the hypervisor level,
configured to saturate all hypervisor CPUs for a controlled
amount of time. During this period, the OFBiz VM therefore
experiences significant CPU steal due to time-sharing at the
hyper-visor level with the workload generated by stress. We
activate stress during periods of 2 minutes, which are followed
by 5-minute periods without contention. This pattern repeats
during the whole duration of each experiment, which we set
to one hour.

B. Results

We execute the above experiments with a number of N =
5, 10, 15, 20 clients. Table VI depicts the average CPU utiliza-
tion generated by these clients under low and high contention
separately. Note that this is the average utilization, whereas the
maximum instantaneous utilization can reach 99% under high
contention. Also, this setup is slightly different from the one
in Section V, as we use a smaller VM for the server, and the

11

TABLE VI
OBSERVED UTILIZATION (%) AND CHECKLOGIN RT (SEC)

Contention N 5 10 15 20

Avg. Util. 17.4 31.8 16.5 47.5
Low Mean RT 0.187 0.203 0.245 0.266

RT95 0.342 0.389 0.526 0.595
Avg. Util. 34.6 51.8 67.1 69.3

High Mean RT 0.199 0.215 0.295 0.297
RT95 0.363 0.434 0.671 0.647

client generates more requests per session, causing a high CPU
utilization with fewer clients. To identify periods of contention
we use the K-means clustering method [35] on readings
of the CPU utilization, which are clustered in two groups
representing high and low contention. Based on this clustering
and the timestamps of the CPU utilization measurements, we
determine the time periods of low and high contention. To
illustrate the impact of the contention introduced, Table VI
depicts the measured RT for one request type, CheckLogin,
during the identified periods of low and high contention.
We observe a significant increase, between 6% and 28%,
in both mean RT and RT95, when contention is introduced.
As in Section V, we use the BL method [30] to obtain
samples of the service demand, which we then use to obtain
PH representations of the processing-time distributions. From
the execution times sampled during the different contention
periods we estimate the processing time distribution for each
of the request classes in Table II, separately for periods of low
and high contention. Using these distributions we introduce a
LINE model similar to the one in Section V, but with an RE
made of two stages that represent periods of low and high
contention, respectively. The model uses the processing time
distribution estimated for each stage and request type.

Tables VII and VIII depict response-time mean and tail
percentiles measured and obtained with LINE, for the two
extreme cases with N = 5 and 20 clients. Note that we focus
on the overall session response time, which is obtained by
putting together all observations, with and without contention.
As in the case without RE, we compare against the percentiles
obtained with the Markov and Chebyshev inequalities. In this
case we use the measured mean and variance of the response
times to obtain these percentiles, thus the only source of error
is the use of the inequality. Clearly, LINE offers response times
that closely follow the measurements, with relative errors in
the 5%-25% range, that typically underestimate the observed
values. Instead, both inequalities produce results that largely
overestimate (by at least one order of magnitude) the response
time percentiles. Similar results are observed in the other
setups considered.

VIII. COMPUTATIONAL REQUIREMENTS

We now report on the computation times required by LINE
to analyze the models in the previous sections. We focus
on computation times as we have observed the memory
consumption in LINE to be negligible. LINE is implemented
in MATLAB 2012b and makes use of its ODE solvers. The
default solver is ode15s, which supports stiff ODE systems,

TABLE VII
SESSION RT MEAN AND PERCENTILES (SEC) - N = 5

Mean RT90 RT95 RT99

Trace 3.83 4.70 5.12 6.34
LINE 3.61 4.45 4.74 5.34

Markov - 38.25 76.50 382.51
Chebyshev - 13.26 18.76 41.95

TABLE VIII
SESSION RT MEAN AND PERCENTILES (SEC) - N = 20

Mean RT90 RT95 RT99

Trace 5.07 6.53 7.18 8.89
LINE 4.03 4.98 5.40 6.43

Markov - 50.66 101.31 506.57
Chebyshev - 16.53 23.37 52.26

but other solvers such as ode23s can also be used. We have
run four sets of experiments with the OFBiz application. In
each set we consider 100 scenarios, varying the number of
users in the set {10, 20, . . . , 200} and the number of cores in
the set {2, 4, 8, 16, 32}. For the first two sets we consider the
case without RE, as in Section V. The first set, labeled PH(1),
assumes exponentially-distributed processing times, which can
be represented with a PH distribution with one phase. The
second set, labeled PH(50), assumes lowly-varying processing
times, as those observed in Table II, modeled with an Erlang
distribution with 50 phases, resulting in an SCV of 0.02. We
used a 3.4 GHz 4-core Intel Core i7 machine, with 4GB
RAM, running Linux Ubuntu 12.04. Table IX shows the ex-
ecution times, including mean, standard deviation, maximum,
minimum, and a 95% confidence interval. These times in-
clude solving the ODE system, computing mean performance
measures, and computing overall RT distributions. While the
times increase significantly with the larger description of
the processing times, these times are still much shorter than
simulations, and can be used for optimization purposes, as
illustrated in the next section. In fact, the simulations of these
instances required on average 6 s, and a maximum of 10.3 s,
being at least one order of magnitude slower than LINE.

For the third and fourth sets of experiments we add an RE
with two stages, similar to the one in Section VII. We consider
two cases for the RE holding times: fast and slow. The slow
RE has mean holding times of 600s and 60s for the two stages,
while the fast RE has mean holding times of only 60s and 6s in
these stages. We observe in Table IX that the inclusion of REs
increases the computation times, although they remain overall
small, and that the increase depends on the stage holding times.

TABLE IX
COMPUTATION TIMES (S)

Model type Mean Std. Dev. Min Max 95% CI

PH(1) 0.09 0.01 0.08 0.12 0.09 0.09
PH(50) 0.49 0.06 0.35 0.62 0.48 0.5

RE slow 1.44 0.31 0.8 1.85 1.38 1.5
RE fast 6.45 3.74 0.93 16.74 5.71 7.2

12

This is caused by the number of events that can be observed in
each stage visit. In the slow RE case, many service-completion
events can be observed in a single visit to a stage, since these
visits are long compared to the mean processing times. Instead,
in the fast RE case, where the visits are of a magnitude similar
to the processing times, only a few events can be observed in
one stage visit. As a result, the blending algorithm described
in Section VI requires more iterations to find the fixed point
that approximates the system steady-state. As mentioned in the
previous section, using simulation for these scenarios required
on average 1.3 hours, and a maximum of 10 hours, which is
two orders of magnitude larger than LINE. These times are
clearly not feasible for optimization purposes.

LQNS, which is a solver for LQN models based on approxi-
mate mean-value analysis, typically features similar or shorter
execution times than those of LINE. This is to be expected as
LINE relies on numerical methods to solve the ODE system
associated to the fluid QN model. Further, obtaining the RT
distributions requires the solution of one ODE system for
each request class. The additional execution time is however
justified as LINE supports PH-distributed processing times and
computes the RT distribution for each request class. LQNS
instead provides average performance metrics only. Further,
LINE integrates REs to model reliability aspects such as
failures or high-contention events.

This comparison is based on the sequential solution of
single LQN models. LINE also features two parallel execution
modes, exploiting the parallel capabilities of MATLAB. The
first mode is based on the parfor method in MATLAB,
which enables the parallel evaluation of multiple LQN models.
The second mode operates as a batch processing engine that
enables the asynchronous submission of multiple jobs, each
of which can consist of several LQN models. Both modes
provide substantial gains, especially when many LQN models
are solved, as for what-if analyses and optimization.

IX. RELIABILITY-AWARE RESOURCE PROVISIONING

In this section we illustrate how LINE can be used to for-
mulate design-time decision problems based on the reliability
and performance of a cloud application. In particular, we
consider an application running on spot instances, which can
be obtained by bidding a price above the spot price, but that
are lost when the spot price surpasses the offered bid. Spot
instances are attractive as their prices can be well below those
of on-demand instances, but the uncertainty in their availability
makes their management challenging.

We consider an application deployed on two availability
zones, such that, when the spot instances in one zone are lost,
those in the other zone can keep serving requests, while a new
bid is submitted to recover the instances lost. As start-up times
of spot instances can be significant [36], in case the instances
in one zone are lost, on-demand instances can be started-up.
Once the spot instances lost are recovered, the on-demand
instances can be stopped, returning to a fully spot-based
deployment. Thus, in case the instances in both zones are lost,
the on-demand instances can keep the application running,
avoiding prolonged down times. To model this deployment

S+O,D S,D

D,S

S,S D,D

D,S+O

R1

R2

F1

R1

F1

F2

R2

F2 F2

F1

E

E

O,D
E

Fig. 6. Random environment for application deployed on two zones

scenario, we use the RE abstraction in LINE to capture the
different deployment states, caused by the evolution of the
spot prices. The RE, depicted in Figure 6, has 7 stages, each
of them described with the tuple (Z1, Z2), where Zi holds
the state of the instances in zone i, which can be one of the
following:
• S, if only the spot instances are up and running;
• D, if the spot instances in this zone are down or lost;
• S + O, if both the spot and on-demand instances are

running;
• O, if only the on-demand instances are running in this

zone.
Accordingly, three types of events may occur:
• Fi, the spot instances in zone i are lost;
• Ri, the spot instances in zone i are recovered;
• E, the emergency on-demand instances are brought up,

an event triggered when the spot instances in either zone
are lost.

These and other definitions are summarized in Table X. Notice
that all the spot instances in each zone are assumed to be of
the same type, and therefore fail together. However, this can
be generalized, to consider instances of different types, each
with a different price.

As an example, consider stage (S, S), where the spot
instances in both zones are running. If event F2 occurs, the
spot instances in zone 2 are lost and the new stage is (S,D),
where only the spot instances in the first zone remain up.
In this stage, event E starts the on-demand VMs, and the
RE switches to stage (S +O,D). Notice that the application
availability is 1 − π(D,D), where π(D,D) is the stationary
probability of finding the application in stage (D,D), where
the instances in both zones have been lost before the on-
demand instances could take over.

A. What-if analysis

We illustrate this deployment scenario with a simple model
of the open-source OFBiz e-commerce application [29]. Dif-
ferent from the setup in Section V, here we assume the
application and the database servers are deployed on separate
VMs, and are replicated on two availability zones. A model
of the spot-instance-based deployment of this application is
depicted in Figure 7. Here a request is served by either
zone, visiting both servers, multiple times if necessary. Once
the request is completed, the user receives the response and
undergoes a think time before submitting a new request.

13

TABLE X
NOTATION FOR THE SPOT-INSTANCE MODEL

State of the instances in each zone
S Spot instances running
D Spot instances lost (down)

S +O Both spot and on-demand instances running
O On-demand instances running

Events
Fi Spot instances in zone i are lost
Ri Spot instances in zone i are recovered
E On-demand instances are started-up

Inter-event times
TF Mean time to lose a spot instance
TR Mean time to recover a spot instance
TE Mean time to start-up an on-demand instances

Number of instances
mS

(i,j)
Number of spot instances in zone i for component j

mO
j Number of on-demand instances for component j

TABLE XI
PROVISIONING AND FAILURE TIMES IN THE SPOT INSTANCE MODEL [36]

TR 60, 300, 600s
TE 60, 300, 600s
TF 600, 1200, 2400, 3600s

Notice that a spot instance provisioning model has also been
recently considered in [37], which is a preliminary follow-up
application of the present work relying on the LINE tool to
set up a model for the availability and optimal topology of a
single instance.

In order to consider realistic scenarios, we have
parametrized our spot instance model using statistics obtained
in a recent workload characterization study [36]. The specific
times considered are summarized in Table XI. While the mean
times to recover spot and on-demand instances TE and TR are
defined according to [36], the mean time to lose an instance
TF is defined to consider different instance availability levels,
as this affects the overall application availability. A given
instance availability can be achieved by setting the bid price
according to historical records as in [37]. The authors of [36]
observe that the startup times of VMs in real clouds, especially
spot instances, are highly variable depending on the network
condition and the VM image size. Therefore, the loss of a
VM introduces uncertainty on the time before the system can
return to full capacity. This uncertainty can easily be modeled
in LINE by means of the RE abstraction. This illustrates a
practical advantage of the features offered by the LINE solver,
which are not available in ordinary queueing network solvers.

Figure 8 depicts the RT CCDF for 3 different values of
the mean time to recover the spot instances in a zone, TR,
between 60s and 600s . We also set the mean time to lose the
spot instance in one zone TF to be one hour, and the mean time
to obtain an on-demand instance TE to 60s . With this setup
the spot instance availability is between 85% and 99%, which
can be achieved by setting the bid price according to historic
prices as in [37]. For instance, a bid price of $ 0.534 can
achieve a 90% availability for m1.xlarge spot instances [37].

Think
time

Zone 1

Zone 2

App Server DB

DB App Server

Fig. 7. Model of the 2-zone deployment

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Response time [s]
C

C
D

F

95%

99%

TR=60
TR=300
TR=600

(a) mS
(i,j)

= 2, mO
j = 1

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Response time [s]

C
C

D
F

95%

99%

TR=60
TR=300
TR=600
TR=600 (Chebyshev)

(b) mS
(i,j)

= 3, mO
j = 1

Fig. 8. Response time CCDF under changes of TR, the time to recover spot
instances

In Figure 8(a) we allocate mS
(i,j) = 2 spot instances in each

zone for each component, and mO
j = 1 on-demand instances

for each component. We observe how the three cases depicted
show a staircase behavior, where the RT distribution shows
different “regimes”. For instance, for TR = 60 a first regime
covers up to the 90th percentile with an exponential tail that
terminates T around 1 s , and a second regime covers the 10%
of the jobs with the longest delays. These different regimes
are the result of the RE, showing how the failures affect the
longest RTs. For TR = 60, over 90% of the requests face
RTs below 1s , but as TR increases, the first regime becomes
less prevalent, leading many more jobs to face the longer RTs
offered under the second regime.

As depicted in Figure 8(b), increasing the number of spot
instances mS

(i,j) to 3, leads to a similar behavior as above, but
in this case at least three regimes are apparent. For TR = 60,
the proportion of jobs with RTs below 1 s , is larger than
in the previous case, while the second regime offers shorter
RTs, going as far as 5s , and covering 99.9% of the requests.
The remaining requests face a different regime that offers
longer RTs. The prevalence and exact times offered by these
regimes varies with TR in a non-trivial fashion, showing the
interactions between reliability and performance captured by
LINE. Figure 8(b) also depicts the approximate RT CCDF for
TR = 600, obtained with the Chebyshev inequality, described
in Section II, which relies on the mean and the variance of the
RT. Not only the approximate distribution can be very far from
the actual CCDF (e.g., the difference for the 95th percentile
is over one order of magnitude), but the approximate CCDF
completely ignores the different regimes caused by the RE.

14

B. Optimal provisioning with LINE

Based on LINE, we can set up an optimal-provisioning
problem to determine the number of instances mS

(i,j) and mO
j

required to achieve a certain SLO at the minimum cost. Let
the vectors mS and mO hold the mS

(i,j) and mO
j variables, and

define CS
i and C as the leasing costs of spot and on-demand

instances, commonly given on an hourly basis. We consider
two metrics to set the SLOs: the mean RT; or a percentile of
the RT distribution.

1) Provisioning based on the mean response time: Given
mS and mO, we can obtain the mean RT E[R] using LINE,
which we write as E[R] = LINE(mS ,mO). Let Rmax be
the maximum mean RT set as an SLO. The reliability-aware
optimal provisioning problem can then be stated as

min
2∑

j=1

(
2∑

i=1

CS
i m

S
(i,j) + COmO

j

)
(7)

s.t. E[R] = LINE(mS ,mO),

E[R] ≤ Rmax,

mS
(i,j) ∈ N+, i = 1, 2, j = 1, 2,

mO
j ∈ N+, j = 1, 2,

where N+ is the set of strictly-positive natural numbers, thus
one spot instance in each zone and one on-demand instance
must be available for each component. This ensures that the
application is able to process requests in every stage except
(D,D). This is a nonlinear non-convex integer problem, for
which meta-heuristic methods are well-suited to find close-to-
optimal solutions. We have implemented a solution procedure
based on simulated annealing [38], which is able to quickly
provide very good solutions, although these are not guaranteed
to be global optima. To implement this method we define a
solution to be a vector with the number of instances of each
type for each component [mS ,mO], and the neighbors of this
solution are found by increasing or decreasing one entry of
this vector by one. The method randomly selects a neighbor
and decides to accept it as the new current solution if the
objective function improves. It can also accept a new solution
if the objective function degrades, according to a probability
that decreases as the temperature in the simulated annealing
process decreases. For the instances considered in the paper,
the optimization method requires between 5 and 25 minutes
to complete in the standard PC described in Section VIII.

Figure 9(a) depicts the RT distribution with the optimal
provisioning found by setting the maximum mean response
time RTmax to be 0.5s , and considering three different values
for the time to retrieve an on-demand instance TE . We observe
that the RT distribution varies significantly, although in all the
cases the maximum of 0.5s on average holds. The optimal
provisioning asks for 9, 12, and 14 spot instances in total,
for TE equal to 60, 300, and 600s , respectively. At the same
time, the deployment availability decreases from 99.99% to
99.97% and 97.22% in the three cases mentioned. Thus, as the
availability decreases, due to the increase in the time to retrieve
the on-demand instances, more spot instances are necessary to
achieve the desired SLO. The increase in spot instances results

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

t [s]

R
es

po
ns

e
tim

e
C

C
D

F

95%

99%

TE=60
TE=300
TE=600

(a) Mean

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

t [s]

R
es

po
ns

e
tim

e
C

C
D

F

95%

99%

TE=60
TE=300
TE=600

(b) 95th percentile

Fig. 9. Response times under optimal provisioning. Various TE

in an improvement of the RT high percentiles, although at a
higher deployment cost.

2) Provisioning based on response time percentiles: We
now consider setting an SLO on the response time x-th
percentile, which can be at most Rmax

x . We obtain the response-
time x-th percentile Rx as Rx = LINE(mS ,mO), as it
depends on mS and mO. This can be incorporated in the
optimal provisioning problem (7) by replacing the first two
constraints by

Rx = LINE(mS ,mO), Rx ≤ Rmax
x . (8)

We perform the same experiment as in the previous section,
now setting an SLO of 1s for the response-time 95th percentile.
The results are depicted in Figure 9(b), where we observe
smaller differences in the RT distributions among the three
scenarios considered. In all of them the provisioning ensures
that the constraint on the 95th percentile holds, which is
achieved by requesting more spot instances. In the three
scenarios the optimal provisioning requests 12, 14, and 14
spot instances, respectively, an increase over the numbers
in the previous experiments. However, in all three scenarios
only 2 on-demand instances are required, which is a decrease
compared to the previous experiment, where between 5 and
6 on-demand instances where requested. Thus, to ensure the
constraint of 1 s on the 95th percentile, the optimal provi-
sioning attempts to have enough capacity in any of the stages
where the spot instances in at least one availability zone are
running. To reduce costs, the on-demand instances are kept
at a minimum, providing little quality of service during the
periods when the application is only running on on-demand
instances. This is apparent in the large difference between the
two regimes in Figure 9(b), where the RTs grow significantly
after the 95th percentile. By comparison, if we use the Markov
inequality to estimate the RT 95th percentile, we find that the
1s SLO is not achievable even with 1000 servers. To find a
feasible provisioning, according to the Markov inequality, we
need to increase the SLO to 10s . For the experiment above, 13,
13, and 14 spot instances and 4, 4, and 5 on-demand instances
are required, respectively. As a result, the use of the Markov
inequality requires more resources than the provisioning using
LINE, even though the SLO is 10 times larger. A similar result
arises with the Chebyshev inequality, where the SLO needs to
be doubled, and the number of required on-demand instances

15

increases to 7. Neither of these inequalities is therefore able
to provide results for tight SLOs.

X. CONCLUSION

We have introduced LINE, a tool for the performance and
reliability analysis of LQN models that relies on a fluid
QN model and a random environment description. We have
shown how LINE is able to capture the interactions between
reliability and performance, and to determine the ability of an
application to achieve given SLOs. Validation against moni-
toring data from a cloud application and simulation show the
ability of LINE to estimate performance metrics, particularly
the response time distribution. While the previous sections
focused on the specific scenarios of resource failures and a
spot-instance-based deployment, LINE can be used to model
many other scenarios of software applications that must cope
with substantial uncertainty, affecting both their reliability and
performance.

APPENDIX

A. Proof of Lemma 1

Before introducing the proof we recall that a function f :
Y → Z is Lipschitz continuous on I ⊂ Y if for every pair
of points x, y ∈ I there exists a non-negative constant L such
that dZ(f(x), f(y)) ≤ LdY (x, y), where Y and Z are metric
spaces and dY and dZ their corresponding metrics. We are
interested in the function g : Rm → R defined in (2) and use
the 1-norm as metric, which in the case of R is simply the
absolute value. For two points x,y ∈ Rm̄ we consider four
cases.
Case 1: xi > ni and yi > ni.

|g(y, i, r,a)− g(x, i, r, a)|

= ni

∣∣∣∣yi,r,ayi
− xi,r,a

xi

∣∣∣∣ < 1

ni
|yi,r,axi − xi,r,ayi|

=
1

ni
|yi,r,a (xi − yi) + (yi,r,a − xi,r,a)yi|

≤ N

ni
(|xi − yi|+ |yi,r,a − xi,r,a|) ≤

2N

ni
|y − x| ,

where the first inequality follows as both 1/xi and 1/yi are
smaller than 1/ni, such that 1/(xiyi) < 1/n2

i . The second
inequality follows from the triangle inequality and the fact
that both yi and yi,r,a are bounded above by the number
of jobs N . The last inequality follows as with the 1-norm
both |xi − yi| and |yi,r,a − xi,r,a| are smaller than |y − x|.
For |yi,r,a − xi,r,a| this is immediate as this is one of the
differences considered in |y − x|. For |xi − yi| we write it
as∣∣∣∣∣∣

R∑
r=1

mi,r∑
a=1

xi,r,a −
R∑

r=1

mi,r∑
a=1

yi,r,a

∣∣∣∣∣∣ =

∣∣∣∣∣∣
R∑

r=1

mi,r∑
a=1

(xi,r,a − yi,r,a)

∣∣∣∣∣∣
≤

R∑
r=1

mi,r∑
a=1

|xi,r,a − yi,r,a| ≤
M∑
i=1

R∑
r=1

mi,r∑
a=1

|xi,r,a − yi,r,a| ,

where the first inequality follows from the triangle inequality
and the last expression is equal to |y − x|, thus showing

that |xi − yi| < |y − x|. The remaining cases follow similar
arguments, which we omit for brevity.
Case 2: xi ≤ ni and yi > ni.

|g(y, i, r,a)− g(x, i, r, a)|

=

∣∣∣∣yi,r,ayi
ni − xi,r,a

∣∣∣∣ < 1

ni
|niyi,r,a − xi,r,ayi|

<
1

ni
|niyi,r,a − nixi,r,a| ≤ |y − x| .

Case 3: xi > ni and yi ≤ ni.

|g(y,i, r, a)− g(x, i, r, a)|

=

∣∣∣∣yi,r,a − xi,r,a
xi

ni

∣∣∣∣ < 1

ni
|yi,r,axi − nixi,r,a|

=
1

ni
|yi,r,a (xi − yi) + yi,r,ayi − nixi,r,a|

≤ 1

ni
|ni (xi − yi) + ni(yi,r,a − xi,r,a)| ≤ 2 |y − x| .

Case 4: xi ≤ ni and yi ≤ ni.

|g(y, i, r, a)− g(x, i, r, a)| = |yi,r,a − xi,r,a| ≤ |y − x| .

As a result |g(y, i, r, a) − g(x, i, r, a)| ≤ 2N |y − x|, as 1 ≤
ni ≤ N .

B. Proof of Theorem 1

[14, Theorem 3.1] states that the sample paths of the
sequence {Xv(t)/v}v∈N+

converge to the deterministic limit
x(t) as v →∞, i.e., that limv→∞Xv(0)/v = x0 implies that
for every δ > 0

lim
v→∞

P
(

sup
s≤t

∣∣∣∣1vXv(s)− x(s)

∣∣∣∣ > δ

)
= 0. (9)

This holds for every finite t if x(s) ∈ E for 0 ≤ s ≤ t, where
E is an open set E ⊂ Rm̄ such that

|F (y)− F (x)| < ME |y − x| , x,y ∈ E, (10)

sup
x∈E


M∑

i,j=1

R∑
r,s=1

mi,r∑
a,b=1

|ej,s,b − ei,r,a| f c(x, i, j, r, s, a, b)

+

M∑
i=1

R∑
r=1

mi,r∑
a,b=1

|ei,r,b − ei,r,a| fn(x, i, r, a, b)

 <∞, (11)

lim
d→∞

sup
x∈E

 ∑
(i,j,r,s,a,b)∈S1(d)

|ej,s,b − ei,r,a| f c(x, i, j, r, s, a, b)

+
∑

(i,r,a,b)∈S2(d)

|ei,r,b − ei,r,a| fn(x, i, r, a, b)

 = 0, (12)

where S1(d) is the set {(i, j, r, s, a, b) : |ej,s,b − ei,r,a| > d},
S2(d) is similarly defined, and ME is a constant. Notice that
condition (10) implies the Lipschitz continuity of F (·) which
ensures the existence of a unique solution to the ODE (6).

Theorem 1 follows from [14, Theorem 3.1] by showing that
the sequence {Xv(t)}v∈N+ verifies the conditions conditions
(10), (11), and (12). As the QN model X(t) is closed, the

16

entries Xi,r,a(t) are bounded above by N , a condition that
also holds for every Xv(t)/v as well as for x(t). As a result
the set E can be chosen as the smallest open set that contains
the set {x ∈ Rm̄ : x ≥ 0,

∑M
i=1

∑R
r=1

∑mi,r

a=1 xi,r,a = N}, as
the sample paths of x(t) never leave this set.

To verify condition (10) we consider x,y ∈ E and the
1-norm to write

|F (y)− F (x)|

=

∣∣∣∣∣∣
M∑

i,j=1

R∑
r,s=1

mi,r∑
a,b=1

(ej,s,b − ei,r,a) (f c(y, i, j, r, s, a, b)

−f c(x, i, j, r, s, a, b))

+

M∑
i=1

R∑
r=1

mi,r∑
a,b=1

(ei,r,b − ei,r,a) (fn(y, i, r, a, b)

−fn(x, i, r, a, b))
∣∣∣

≤2

M∑
i,j=1

R∑
r,s=1

mi,r∑
a,b=1

|f c(y, i, j, r, s, a, b)−f c(x, i, j, r, s, a, b)|

+ 2

M∑
i=1

R∑
r=1

mi,r∑
a,b=1

|fn(y, i, r, a, b)− fn(x, i, r, a, b)|

since |ej,s,b − ei,r,a| ≤ 2. From Lemma 1, (3), (4), and letting
λ = maxi,r{λi,r}, we get

|F (y)− F (x)| ≤2

M∑
i,j=1

R∑
r,s=1

mi,r∑
a,b=1

2Nλi,r |y − x|

+ 2

M∑
i=1

R∑
r=1

mi,r∑
a,b=1

2Nλi,r |y − x|

≤4λN |y − x|
M∑
i=1

R∑
r=1

mi,r
M∑
j=1

R∑
s=1

mj,s

+ 4λN |y − x|
M∑
i=1

R∑
r=1

(
mi,r

)2
≤ 4λNm̂|y − x|,

where m̂ summarizes the summation terms, and therefore
condition (10) is satisfied.

Condition (11) can be readily verified by noticing that
|ej,s,b−ei,r,a| ≤ 2, |ei,r,b−ei,r,a| ≤ 2, f1(x, i, j, r, s, a, b) ≤
λi,rni, and fn(x, i, r, a, b) ≤ λi,rni. Finally, condition (12) is
verified by observing that the sets S1(d) and S2(d) are empty
for every d > 2.

C. PH Examples

Examples of PH distributions include the exponential, Er-
lang, and hyper-exponential distributions. The simple expo-
nential distribution with rate λ has a PH representation with
m = 1 phase, α = 1, T = −λ. The Erlang(n, γ) distribution,
which is the sum of n independent and identically distributed
exponential distributions with parameter γ, has a PH rep-
resentation with n phases. For instance, the Erlang(3, γ)

distribution can be represented as m = 3,

α = [1 0 0], T =

 −γ γ 0
0 −γ γ
0 0 −γ

 . (13)

Another common example is the hyper-exponential distri-
bution, which is the convex combination of n exponential
distributions, where the i-th distribution has rate γi and is
selected with probability βi. For instance, a hyper-exponential
distribution with two phases can be represented as m = 2,

α = [β1 β2], T =

[
−γ1 0

0 −γ2

]
. (14)

The flexibility of PH distributions is also reflected in a number
of fitting algorithms [39]–[42] to obtain a PH representation
from empirical data. These algorithms are available as part of
software tools such as [43]–[45], among others.

ACKNOWLEDGEMENT

The research of Giuliano Casale and Juan F. Pérez leading
to these results has received funding from the European
Union under grant agreement FP7-318484 (MODAClouds)
and from the EPSRC grant EP/M009211/1 (OptiMAM). This
publication reflects only the authors’ view and the European
Commission is not responsible for any use that may be made of
the information it contains. The research of Juan F. Pérez has
been supported by the ARC Centre of Excellence for Math-
ematical and Statistical Frontiers (ACEMS), and was partly
conducted while the first author was at Imperial College Lon-
don and The University of Melbourne, and finalized while at
Universidad del Rosario. Data and software referenced in this
paper are available at https://doi.org/10.5281/zenodo.203014
and https://doi.org/10.5281/zenodo.203029, released under the
CC-BY 4.0 and BSD 3-Clause licenses, respectively. The
authors wish to thank Weikun Wang for processing the OFBiz
data traces used for validation.

REFERENCES

[1] 451 Research, “Cloud computing ’as a service’ marketplace fore-
cast to grow 3x through 2019,” https://451research.com/report-
short?entityId=87624&referrer=marketing, 2015, accessed in Dec 2016.

[2] “Amazon EC2 Spot Instances,” https://aws.amazon.com/ec2/spot/.
[3] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi,

“Enhanced modeling and solution of layered queueing networks,” Soft.
Eng., IEEE Trans., vol. 35, pp. 148–161, 2009.

[4] Object Management Group (OMG), “A UML profile for MARTE:
Modeling and analysis of real-time embedded systems, beta 2,” OMG,
Tech. Rep. OMG Document Number: ptc/2008-06-09, 2008.

[5] M. Tribastone, P. Mayer, and M. Wirsing, “Performance prediction of
service-oriented systems with layered queueing networks,” in ISoLA,
2010.

[6] S. Becker, H. Koziolek, and R. Reussner, “Model-based performance
prediction with the palladio component model,” in WOSP, 2007.

[7] H. Koziolek and R. Reussner, “A model transformation from the pal-
ladio component model to layered queueing networks,” in Performance
Evaluation: Metrics, Models and Benchmarks. Springer, 2008.

[8] X. Wu and M. Woodside, “Performance modeling from software com-
ponents,” in WOSP, 2004.

[9] G. Franks, P. Maly, M. Woodside, D. C. Petriu, A. Hubbard, and
M. Mroz, Layered Queueing Network Solver and Simulator User Man-
ual, Carleton University, January 2013.

[10] O. Das and C. M. Woodside, Architecting Dependable Systems II.
Springer-Verlag, 2004, ch. Dependability Modeling of Self-Healing
Client-Server Applications.

17

[11] G. Casale, M. Tribastone, and P. G. Harrison, “Blending randomness in
closed queueing network models,” Perf. Eval., vol. 82, pp. 15–38, 2014.

[12] D. Bacigalupo, J. van Hemert, X. Chen, A. Usmani, A. Chester, L. He,
D. Dillenberger, G. Wills, L. Gilbert, and S. Jarvis, “Managing dynamic
enterprise and urgent workloads on clouds using layered queuing and
historical performance models,” Simulation Modelling Practice and
Theory, vol. 19, pp. 1479–1495, 2011.

[13] J. F. Pérez and G. Casale, “Assessing SLA compliance from palladio
component models,” in SYNASC, 2013.

[14] T. G. Kurtz, “Solutions of ordinary differential equations as limits of
pure jump Markov processes,” J. Appl. Probab., vol. 7, pp. 49–58, 1970.

[15] M. Tribastone, “A fluid model for layered queueing networks,” IEEE
Trans. Softw. Eng., vol. 39, pp. 744–756, 2013.

[16] P. Harrison and W. Knottenbelt, “Passage time distributions in large
markov chains,” ACM Perf. Eval. Rev., vol. 30, pp. 77–85, 2002.

[17] R. Bellman, Dynamic programming. Princeton University, 1957.
[18] G. Casale, “Approximating passage time distributions in queueing mod-

els by bayesian expansion,” Perf. Eval., vol. 67, pp. 1076–1091, 2010.
[19] D. Ardagna, C. Ghezzi, and R. Mirandola, “Rethinking the use of models

in software architecture,” in QoSA, 2008.
[20] I. Cunha, J. Almeida, V. Almeida, and M. Santos, “Self-adaptive capacity

management for multi-tier virtualized environments,” in IFIP/IEEE IM,
2007.

[21] “LINE website,” http://line-solver.sourceforge.net, 2016.
[22] A. Faisal, D. Petriu, and M. Woodside, “Network latency impact on

performance of software deployed across multiple clouds,” in CASCON,
2013.

[23] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu,
“Generating adaptation policies for multi-tier applications in consoli-
dated server environments,” in ICAC, 2008.

[24] S. Asmussen, Applied probability and queues. Springer, 2003.
[25] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quanti-

tative System Performance: Computer System Analysis Using Queueing
Network Models. Prentice-Hall, Inc., 1984.

[26] M. Reiser, “A queueing network analysis of computer communication
networks with window flow control,” IEEE Trans. Comm., vol. 27, pp.
1199–1209, 1979.

[27] L. Bortolussi, J. Hillston, D. Latella, and M. Massinkc, “Continuous
approximation of collective system behaviour: A tutorial,” Perf Eval,
vol. 70, pp. 317–349, 2013.

[28] R. A. Hayden, A. Stefanek, and J. T. Bradley, “Fluid computation of
passage-time distributions in large Markov models,” Theor. Comput. Sci.,
vol. 413, pp. 106–141, 2012.

[29] J. Moschetta and G.Casale., “OFBench: an Enterprise Application
Benchmark for Cloud Resource Management Studies,” in MICAS, 2012.

[30] J. F. Pérez, G. Casale, and S. Pacheco-Sanchez, “Estimating computa-
tional requirements in multi-threaded applications,” IEEE Trans. Softw.
Eng., vol. 41, pp. 264 – 278, 2015.

[31] W. Whitt, “Approximating a point process by a renewal process, i: Two
basic methods,” Operations Research, vol. 30, pp. 125–147, 1982.

[32] M. Bertoli, G. Casale, and G. Serazzi, “JMT: performance engineering
tools for system modeling,” ACM Perf. Eval. Rev., vol. 36, pp. 10–15,
2009.

[33] G. Casale and M. Tribastone, “Fluid analysis of queueing in two-stage
random environments,” in QEST, 2011.

[34] “Open Nebula,” http://opennebula.org/.
[35] R. Johnson and D. Wichern, Applied Multivariate Statistical Analysis.

Prentice-Hall, 1998.
[36] M. Mao and M. Humphrey, “A performance study on the VM startup

time in the cloud,” in IEEE CLOUD, 2012.
[37] D. Dubois and G. Casale, “Autonomic provisioning and application

mapping on spot cloud resources,” in IEEE ICCAC, 2015.
[38] S. Kirkpatrick, C. D. Gelatt, Jr, and M. P. Vecchi, “Optimization by

simulated annealing,” Science, vol. 220, pp. 671–680, 1983.
[39] S. Asmussen, O. Nerman, and M. Olsson, “Fitting Phase Type distribu-

tions via the EM algorithm,” Scan. J. Stat., vol. 23, pp. 419,441, 1996.
[40] A. Bobbio, A. Horvath, and M. Telek, “Matching three moments with

minimal acyclic Phase Type distributions,” Stoch. Model., vol. 21, pp.
303–326, 2005.

[41] H. Okamura, T. Dohi, and K. S. Trivedi, “A refined EM algorithm for
PH distributions,” Perf. Eval., vol. 68, pp. 938–954, 2011.

[42] A. Thummler, P. Buchholz, and M. Telek, “A novel approach for phase-
type fitting with the EM algorithm,” IEEE Trans. Dep. Sec. Comp.,
vol. 3, pp. 245–258, 2006.

[43] P. Reinecke, T. Krauss, and K. Wolter, “Hyperstar: Phase-type fitting
made easy,” in QEST, 2012.

[44] A. Bobbio, A. Horvath, and M. Telek, “PhFit: a general phase-type
fitting tool,” in DSN, 2002.

[45] J. F. Pérez and G. Riaño, “jPhase: An object-oriented tool for modeling
phase-type distributions,” in SMCTools, 2006.

Juan F. Pérez is an Assistant Professor at Universidad del Rosario, Colombia,
Department of Applied Mathematics and Computer Science. He obtained a
PhD in Computer Science from the University of Antwerp, Belgium, in 2010.
He was a Research Associate in performance analysis at Imperial College
London, UK, Department of Computing, and a Research Fellow in stochastic
modeling at the University of Melbourne, Australia, School of Mathematics
and Statistics. He is an Associate Investigator of the ARC Centre of Excellence
for Mathematical and Statistical Frontiers (ACEMS). His interests center
around the performance analysis of computer systems, especially on cloud
and cluster computing and optical networking.

Giuliano Casale received the Ph.D. degree in Information Technology from
Politecnico di Milano, Italy, in 2006. In 2010 he joined the Department of
Computing at Imperial College London, UK, where is currently a Senior Lec-
turer. Previously, he worked as a research staff member at SAP Research UK.
He teaches and does research in performance engineering, cloud computing,
and operations research. He has served as co-chair for several conferences in
the area of performance engineering, including SIGMETRICS/Performance,
MASCOTS, ICAC and ICPE. He is member of the IFIP WG 7.3 group on
Computer Performance Analysis and serves in the ACM SIGMETRICS Board
of Directors.

