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an Efficient Approach
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Abstract—Many modern software applications rely on parallel job processing to exploit large resource pools available in cloud and grid
infrastructures. The response time of a parallel job, made of many subtasks, is determined by the last subtask that finishes. Thus, a
single laggard subtask or a failure, requiring re-processing, may increase the response time substantially. To overcome these issues,
we explore concurrent replication with canceling. This mechanism executes two job replicas concurrently, and retrieves the result of the
first replica that completes, immediately canceling the other one. To analyze this mechanism we propose a stochastic model that
considers replication at both job-level and task-level. We find that task-level replication achieves a much higher reliability and shorter
response times than job-level replication. We also observe that the impact of replication depends on the system utilization, the subtask
reliability, and the correlation among replica failures. Based on the model, we propose a resource-provisioning strategy that determines
the minimum number of computing nodes needed to achieve a service-level objective (SLO) defined as a response-time percentile.
This strategy is evaluated by considering realistic traffic patterns from a parallel cluster, where task-level replication shows the potential
to reduce the resource requirements for tight response-time SLOs.

Index Terms—Parallel-job processing, Performance analysis, Quality of Service.
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1 INTRODUCTION

Parallel job processing has become a common feature of
many software systems. For instance, many scientific ap-
plications and data processing frameworks rely on splitting
a job into many subtasks, taking advantage of the large re-
source pools offered in grid and cloud infrastructures. When
processing parallel jobs, the response time is determined
by the last subtask to finish, a factor that can amplify the
variability in the observed response times significantly, as
observed in Google services [1]. This effect is further inten-
sified when the subtasks that compose a job fail, creating an
overall unreliable job out of many highly-reliable subtasks.
A common approach to deal with unreliable subtasks is
to re-execute them if the response is not obtained after a
timeout. This however increases the response times and
their variability, harming latency-sensitive applications [2].

A different alternative to deal with this problem is by
concurrent replication with canceling, where the job and a
replica are executed concurrently on different resources, and
once a result is obtained from either, the outstanding replica
is canceled. Concurrent replication, without canceling, has
been proposed recently [1], [3], [4], [5] in different settings,
including computing clusters, DNS servers, and TCP con-
nection establishment. Its appeal lies in that a result can be
provided as soon as one of the replicas completes, avoiding
delays caused by waiting for a timeout and re-executing.
However, in computing clusters its main drawback lies in
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The research of Juan F. Pérez is supported by the ARC Centre of Excellence for
Mathematical and Statistical Frontiers (ACEMS).

the additional resources required to process the replicas
concurrently, increasing the load on the servers and poten-
tially leading to longer response times. This effect can be
mitigated by the introduction of replica cancellation, as the
resources used by a job and its replica are freed as soon
as one of them completes service. In addition, concurrent
replication is appealing in the light of the low utilization
common in data centers, with reported average utilization
of 18% [6]. Also, traces released by Facebook reveal median
CPU and memory utilization under 20% [3].

While effective to improve reliability, it is still unclear
up to what extent replicating parallel jobs in computing
clusters can provide gains in terms of response times, par-
ticularly for the tail of the response-time distribution. To
better understand this effect, we propose a stochastic model
to determine the response-time distribution in a system that
processes synchronous parallel jobs and uses replication to
improve reliability. The main features of the model are

• It considers both task-level and job-level replication with
canceling, as well as the no-replication case, in a single
framework, as described in Section 4.
• It explicitly considers correlation between replica fail-

ures, covering cases from fully-independent to perfectly-
correlated failures.
• It allows for general job arrival processes that can display

different levels of variability and auto-correlation.
• In Section 5 we develop an efficient method to solve this

model, enabling us to consider jobs with a large number
of subtasks.

An early version of this model was presented in [7], which
focused on the mean response time only, and was limited to
independent replica failures. Instead, in this paper we focus
on the response-time distribution, which requires different
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modeling and solution approaches.
Making use of this model, Section 6 evaluates the impact

of replication on the offered response times, and how this is
affected by the system parameters. We find that concurrent
replication with canceling, compared to its counterpart with-
out canceling, significantly reduces the resource utilization
and delivers shorter response times, making fault-tolerance
via replication more applicable. While both job-level and
task-level replication improve the system reliability, task-
level replication achieves a much higher reliability while
introducing a lower load and delivering shorter response
times. Further, we observe that the impact of replication
is affected not only by the system utilization, but also by
the subtask reliability and the correlation among replica
failures. Under low to medium utilizations, task-level repli-
cation is able to improve the response times, as long as
the subtask reliability is high. Scenarios with low subtask
reliability benefit from replication in terms of reliability, but
the room for improving the response times is more limited.

In Section 7 we rely on the proposed model to devise
a resource-provisioning strategy that determines whether
replication should be adopted or not, and obtains the min-
imum number of computing nodes needed to comply with
a service-level objective (SLO) [8]. We consider SLOs on the
percentiles of the response-time distribution or on moments
such as mean or variance. In Section 8 we evaluate this
resource-provisioning strategy by considering realistic traf-
fic patterns from a parallel cluster, making use of logs from
the RICC Cluster [9]. The results highlight that ignoring the
variability in the arrival process at the time of provisioning
may lead to large SLO violations. We also observe that,
in addition to the gains in reliability, task-level replication
has the potential to reduce the resource requirements under
tight response-time SLOs. Before introducing the model,
we review related works in Section 2 and introduce the
reference model and replication strategies in Section 3.

2 RELATED WORK

When processing parallel jobs a subtask may fail during
service due to a number of reasons, such as errors in the
input data, the detection of a deadlock, communication
failures, among others. Due to the scale and complexity
of large-scale parallel systems, it is infeasible to eliminate
all possible failures [1], [10]. A traditional fault-tolerance
mechanism to handle request failures is to re-execute the
request after a timeout [10], [11]. Although effective to
handle failures, this approach introduces additional delays
that degrade the response times offered by the application.
This effect is particularly critical for latency-sensitive ap-
plications, for which all subtasks must complete within a
strict deadline, in order for the application to be responsive
[1]. Concurrent replication has been recently considered [1],
[3], [4], [5] to reduce latency in different settings, issuing
replicas to diverse resources, and using the result from
whichever replica responds first. For instance, [3] proposes
to run multiple copies of small interactive jobs to mitigate
the effect of latency, showing a significant reduction in the
mean response time, at a small cost in additional resources.
[4] analytically characterizes the conditions under which
redundant requests help in reducing latency, focusing on the
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mean response times of fully reliable jobs. [10] demonstrates
replication to be an effective way to achieve robustness
under unpredictable failures while limiting latency. Repli-
cation has also been considered at the operating-system
level [12], [13], at both thread and process levels, where
the latter shows a better performance thanks to its lower
overhead. However, the execution of concurrent replicas
may increase the resource utilization, and the response
times, beyond desirable levels. To curb the additional load
created by concurrent replication, [1] proposes to cancel any
outstanding replicas in process immediately after the first
one completes. This approach, referred to as replication with
canceling, was analyzed for the case of single-task jobs with
two independent queues and servers in [14], as well as for
synchronous parallel processors in [7], [15], which focused
on the mean response time. Instead, in this paper we look
into the response-time distribution, and especially on its tail.
Further, we remove the assumption of independent replica
failures, explicitly modeling their correlation.

To model the execution of synchronous parallel jobs,
and their replicas, we make use of split-merge queues. In
a split-merge queue, shown in Figure 1, an incoming job
joins a queue and, upon reaching the head of the queue,
splits into multiple subtasks, which are processed simulta-
neously by a set of parallel processors. These processors are
all blocked until all the subtasks finish service, at which
point the subtasks rejoin and depart from the system. Split-
merge queues have been studied, for example, in [16], which
determined the job service time assuming exponential task
service times, and introduced an approximation for general
heterogeneous service times. Also, [17] derived an approx-
imation for the response-time distribution in a split-merge
queue with general service times and Poisson arrivals. These
results however do not consider task failures nor replication,
which are the focus of this paper.

3 BACKGROUND

3.1 Reference Model
We consider a system consisting of a central dispatcher
and c distributed and homogeneous computing nodes, as
shown in Figure 2, where jobs that arrive at the dispatcher
are assigned to the computing nodes in either a round-
robin or random fashion. The advantage of these scheduling
policies is that jobs are distributed evenly among the nodes,
and no communication is required between the nodes and
the dispatcher about the nodes’ state. A job starts service
directly if the corresponding node is idle, or joins the end
of the queue in front of the node, if it is busy, and waits
until all the jobs in front are processed, with first-come
first-served (FCFS) scheduling. Each node is composed of



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Arrivals�

X1�

X2�

Xn�

X1�

X2�

Xn�

�!
�!
�!

�!
�!
�!

�!
�!
�!

Merge  
point�

Split  
point�

(a) Job-level Replication

X1�

X1�

�!
�!
�!

Merge  
point�

Split  
point�

X2�

X2�

�!
�!
�!

Xn�

Xn�

�!
�!
�!

�!
�!
�!Arrivals�

(b) Task-level Replication

Fig. 3: Reference job-level and task-level models

multiple processors, such that, when a job starts service,
each of its n subtasks is assigned to one of the processors
in the corresponding node. The number of subtasks in a job,
n, is also referred to as the job size. The subtasks processing
times are assumed to be exponentially distributed with rate
µ. Subtasks in service are subject to failures, with the time
to failure being exponentially distributed with rate α. When
a subtask fails during service, and no replication is adopted,
the whole job fails and leaves the computing node. We
assume that the node is not affected by the failure, and
continues to serve the next job in front of the queue. To
increase the system reliability, we propose to concurrently
process job replicas, and consider two levels of replication
granularity, as described next.

3.2 Replication Granularity
For each arriving job, r ≥ 1 replicas are submitted concur-
rently to the central dispatcher. In this paper we consider
the cases r = 1, where no replication is adopted, and r = 2,
where a total of two job replicas are submitted, including the
original copy. We consider the two replication granularity
levels proposed in [3] for parallel jobs. The first option is job-
level replication, where for every job submitted to the clus-
ter, two replicas are spawned and processed independently,
as shown in Figure 3(a). Once the result from the earliest job-
replica is obtained, the other one is canceled immediately if
it is still in service. Job-level replication is appealing due
to its simplicity, but each job-replica is successful only if
all its subtasks are successful. The second alternative is to
clone at the subtask level, as shown in Figure 3(b), where
every subtask is cloned and the result of the first replica to
complete is returned, canceling its sibling if still in process.
In this case it is enough that a single replica of each subtask
succeeds to have a successful job completion.

In the system without replication, we assume the cluster
is composed of c nodes and cn processors in total, such that
it can process c jobs, each of size n, in parallel. If two replicas
are adopted, either at job or task level, then every two
nodes, i.e., 2n processors, are grouped together, allowing
the processing of c/2 concurrent replicated jobs.

In Section 4 we show that, while the subtask processing
times are exponentially distributed, the job processing times
follow a phase-type (PH) distribution. Further, to consider
the variability and auto-correlation of the job inter-arrival
times (IATs) observed in compute clusters, we model the
job arrival process as a Markovian Arrival Process (MAP).
We thus introduce PH distributions and MAPs.

3.3 Phase-type Distributions
Consider a Markov chain with n+1 states where the first
n states are transient and the state n+1 is absorbing. The

generator matrix of this chain can be written as
[
B b
0′ 0

]
,

where the matrix B holds the transition rates among the n
transient states, and the exit vector b=−B1 holds the rates
at which the chain jumps into the absorbing state. Here 1
is a column vector of ones, 0 a column vector of zeros,
and ′ stands for the matrix transpose. A phase-type (PH)
distribution [18] is defined as the distribution of the time
to absorption X in this chain. We denote it as PH(τ , B),
where τ is the 1×n vector holding the initial probability
distribution with which the chain starts in any of the n
transient states. The cumulative distribution function (CDF)
of the time to absorption is F (x)=1−τ exp(Bx)1, for x ≥ 0,
and the expected absorption time is E[X]=−τB−11.

3.4 Markovian Arrival Processes
Markovian arrival processes (MAPs) were introduced in
[19] as a generalization of PH distributions to represent
correlated point processes with PH inter-event distributions.
The continuous-time MAP [18] is a marked Markov chain
with generator matrix D=D0+D1, where the elements of
D0 and D1 represent transitions without and with arrivals,
respectively. D1 is a non-negative matrix, and D0 has non-
negative off-diagonal entries and strictly negative diagonals,
such that (D0+D1)1=0. As an example, consider a MAP
with two phases and matrices

D0 =

[
−λ1 0

0 −λ2

]
, D1 =

[
0 λ1
λ2 0

]
.

When the arrival process is in the first phase, a job arrives
with rate λ1, which causes the process to jump to the
second phase, where a job arrives instead with rate λ2,
triggering the process back to phase one. The mean arrival
rate is λ=γD11, where γ is the stationary distribution of the
underlying Markov chain, i.e., γD=0 and γ1=1. A MAP
can represent a renewal process with PH(τ , B) inter-arrival
times by setting D0=B and D1=bτ .

4 THE JOB SERVICE-TIME DISTRIBUTION

The job service time is the interval between the time that
all the job subtasks enter a node’s processors, and the time
the job leaves the node, either with service completion or
failure. In this section we show that, under the assumption
of exponential service and failure times for the subtasks,
the job service time follows a PH distribution with rep-
resentation (αser, Sser), either with or without replication.
Further, we consider the case where failures across replicas
are positively correlated, i.e., the failure of a replica makes
more likely the failure of its partner. Finally, we show how
the analysis of a tagged node can be extended to the multi-
node case under round-robin scheduling.

4.1 No-replication Model
In the no-replication case, the job service state is de-
scribed by N1(t), the number of subtasks in service
at time t. The set of service states, or phases, is thus



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

NJ={n1|n1∈{1, 2, . . . , n}}, and the job leaves the system
when either all its subtasks complete service successfully,
or one of them fails. The job service time thus has a
PH(αser, Sser) representation, where NJ is the set of tran-
sient states, and we consider two absorbing states, S and
F, representing the cases where the job completes service
successfully or encounters a failure, respectively. The ab-
sorption vectors tS and tF hold the absorption rates into
states S and F , respectively, and t=tS+tF . If a job is in
phase n1>1, a subtask service completion leads the job to
phase n1−1 with rate n1µ. The (non-diagonal) entries of Sser
are thus Sser(n1, n1−1)=n1µ. If n1=1, the subtask service
completion leads the job to a successful completion, thus to
absorption in phase S. Instead, if the job is in phase n1 ∈ NJ
and a subtask fails, the service process is absorbed in phase
F with rate n1α. Finally, a job always starts service in phase
n, as all its subtasks start service at the same time, thus
the initial probability vector is such that αser(n)=1, and all
its other entries are zero. As an example, consider the case
with n=2 subtasks, where the service phases areNJ={2, 1}.
Letting β=α+µ, the matrix [Sser|tS , tF ] is

2 1
... S F 2 −2β 2µ
... 0 2α

1 0 −β
... µ α

. (1)

4.2 Task-level Replication
For task-level replication, we define the job service state to
be (N2(t), N1(t)), where N2(t) is the number of subtasks
with both replicas in service, and N1(t) is the number of
subtasks with one failed replica at time t. As each job has n
subtasks, the set of service phases is NJ={(n2, n1)|n2, n1 ∈
{0, . . . , n}, 1≤n2+n1≤n}, and the number of phases is
n(n+3)/2. The transition rates of the sub-generator ma-
trix Sser are summarized in Table 1. Consider for instance
the state (n2, n1)∈NJ with n2≥1, where either of the two
replicas of the n2 subtasks may encounter a failure, making
the service process jump to state (n2−1, n1+1) with rate
2n2α. Further, since every subtask in the job starts with both
replicas in process, the service process starts in state (n, 0),
thusαser((n, 0))=1, and all the other entries ofαser are zero.
As an example, consider the case with n=2 phases, which
has 5 service phases, NJ={(2,0), (1,1), (1,0), (0,2), (0,1)}. The
matrix [Sser|tS , tF ] is thus given by

(2,0) (1,1) (1,0) (0,2) (0,1)
... S F



(2,0) −4β 4α 4µ 0 0
... 0 0

(1,1) 0 −3β µ 2α 2µ
... 0 α

(1,0) 0 0 −2β 0 2α
... 2µ 0

(0,2) 0 0 0 −2β 2µ
... 0 2α

(0,1) 0 0 0 0 −β
... µ α

. (2)

4.3 Job-level Replication
For job-level replication, we track the number of subtasks
in service of each of the two job replicas as (N2(t), N1(t)).
To limit the state space, we let N2(t) be the number of
subtasks in service of the job replica with more subtasks

TABLE 1: Transition rates for task-level replication

From To Rate Range
(n2, n1) (n2 − 1, n1 + 1) 2n2α n2 ≥ 1, n1 ≥ 0
(n2, n1) (n2 − 1, n1) 2n2µ n2 ≥ 2, n1 ≥ 0
(n2, n1) (n2, n1 − 1) n1µ n2 ≥ 0, n1 ≥ 2
(n2, n1) (F) n1α n2 ≥ 0, n2 ≥ 1

(1,1) (1,0) µ n2 = 1, n1 = 1
(1,1) (0,1) 2µ n2 = 1, n1 = 1
(1,0) (S) 2µ n2 = 1, n1 = 0
(0,1) (S) µ n2 = 0, n1 = 1

in service, and let N1(t) be the number of subtasks in
service of the other job replica. The service-phase space
is thus NJ={(n2, n1)|n2, n1∈{0, . . . , n}, n2≥n1}, which has
cardinality n(n+3)/2. In the example above, with n=2, we
have 5 service phases: {(2,2), (2,1), (2,0), (1,1), (1,0)}. Notice
that when N1(t) equals 0, one of the job replicas has failed
while the other is still in service. As an example, consider the
case where the service process is in state (n2, n1)∈NJ with
n2>n1≥1, and one of the n1 subtasks of the job with the
least number of subtasks in process fails; the service process
jumps to state (n2, 0) with rate n1α. This and the other
transition rates for this case are summarized in Table 2. Also,
as both job replicas start with all their subtasks in process,
all jobs start service in phase (n, n), thus αser((n, n))=1.
Remark 1. Notice that in all the cases, with or without repli-

cation, the Sser matrix has an upper-triangular structure.
In the case without replication we simply order the phase
space in decreasing order, and see that the only transition
allowed from state n1 is to state n1−1, resulting in
an upper-triangular matrix Sser, as in Eq. (1). For the
cases with replication, we obtain a similar structure by
ordering the phase space lexicographically in decreasing
order. From tables 1 and 2 we observe that all transitions
from a phase (n2, n1) are to a phase (n2, n1−1) or to
(n2−1,−), i.e., either the first or the second variable
decrease. Thus, under a decreasing lexicographic order,
the matrix Sser is upper triangular. This is exemplified in
Eq. (2). This structure will be exploited in the numerical
methods proposed in Section 5.

4.4 Introducing Correlation Between Replicas
So far we have assumed that the failures of the replicas of
a subtask or job are statistically independent. For instance,
in Eq. (2), in state (2, 0) each task fails independently with
rate α, thus the total rate to jump to state (1, 1) is 4α. This is
not necessarily true for real applications, where the source
of a failure may be located in the task itself, for instance
due to its input data. We thus introduce correlation between
replicas, which we model by defining the probability p that
the failure of one replica causes its partner to fail as well.

4.4.1 Task-level replication
For task-level replication, the time to the first failure among
the two subtask replicas is exponentially distributed with
rate 2α. To incorporate correlation, we model the time to
failure for the remaining replica as the product of two
independent random variables, a Bernoulli random variable
with mean 1−p and an exponential random variable with
parameter α, i.e., the probability that the time to failure of
the second replica is less than t is p+(1−p)(1− exp−αt),
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TABLE 2: Transition rates for job-level replication

From To Rate Range
(n2, n1) (n2, n1 − 1) n1µ n2 > n1 ≥ 2
(n2, n1) (n2, n1 − 1) 2n1µ n2 = n1 ≥ 2
(n2, n1) (n2 − 1, n1) n2µ n2 > n1 ≥ 1
(n2, n1) (n2, 0) n1α n2 > n1 ≥ 1
(n2, n1) (n1, 0) n2α n2 > n1 ≥ 1
(n2, n1) (n2, 0) 2n1α n2 = n1 ≥ 1
(n2, 0) (n2 − 1, 0) n2µ n2 ≥ 2, n1 = 0
(n2, 0) (F) n2α n2 ≥ 1, n1 = 0
(n2, 1) (S) µ n2 ≥ 2, n1 = 1

(1,1) (S) 2µ n2 = 1, n1 = 1
(1,0) (S) µ n2 = 1, n1 = 0

for 0≤p≤1 and t≥0. Clearly, the case when p equals 0 is
equivalent to the independent case since the second replica
fails with exponential rate α. Instead, when p equals 1,
task-level replication works exactly as the no-replication
case since the failure of either subtask replica leads to the
failure of its sibling, resulting in the failure of the whole job.
Intermediate cases are covered by values of p between 0 and
1, where a larger value of p decreases the job reliability as it
makes more likely the failure of both subtask replicas.

4.4.2 Job-level replication
The introduction of correlation in job-level replication is
more involved due to the lack of synchronization between
the replicas, since the completion of a subtask replica does
not cancel its partner. As the subtasks are homogeneous,
if a job is in service phase (n2, n1)∈NJ , for each of the
n2 subtasks in the first job replica, its partner is still in
service in the second job replica with probability n1/n, or it
has already completed service with probability (n−n1)/n.
Thus, the failure of any of these n2 subtasks causes the
failure of its sibling subtask in the other job replica with
probability pn1/n. As such an event triggers the failure of
the whole job, the job jumps from phase (n2, n1) to the
absorbing phase F with rate n2α(pn1/n). On the other
hand, the failure of any of the n2 subtasks does not trig-
ger the failure of its sibling in service with probability
(1−p)n1/n. Also, the sibling subtask may have already
completed service with probability (n−n1)/n. As a result,
the job transits from phase (n2, n1) to phase (n1, 0) with
rate n2α((1−p)n1/n+(n−n1)/n)=n2α(1−pn1/n).

Using a similar argument, the failure of any of the
n1 subtasks in the second job replica leads the job to
transit from phase (n2, n1) to phase (n2, 0) with rate
n1α(1−pn2/n), and to the absorbing state F with rate
n1α(pn2/n). The transition rates for job-level replication
with correlation are summarized in Table 3, from which it is
clear that the case with p=0 is equivalent to the independent
case. However, when p equals 1, the behavior of job-level
replication is not equivalent to the case without replication
as the successful completion of a subtask in one job replica
does not cancel its partner in the other job replica, which
can still fail and make its job replica fail as well. We study
this issue experimentally in Section 6.

4.5 The Multi-node System
Based on the analysis of a single node, the extension to the
multi-node case relies on the simple observation that each
node operates independently and only interacts with the

TABLE 3: Transition rates for job-level replication with
correlated failures

From To Rate Range
(n2, n1) (n2, n1 − 1) n1µ for n2 > n1 ≥ 2
(n2, n1) (n2, n1 − 1) 2n1µ for n2 = n1 ≥ 2
(n2, n1) (n2 − 1, n1) n2µ for n2 > n1 ≥ 1
(n2, n1) (n2, 0) n1α(1− n2p/n) for n2 > n1 ≥ 1
(n2, n1) (n1, 0) n2α(1− n1p/n) for n2 > n1 ≥ 1
(n2, n1) (F) 2n1n2αp/n for n2 ≥ n1 ≥ 1
(n2, n1) (n2, 0) 2n1α(1− n2p/n) for n2 = n1 ≥ 1
(n2, 0) (n2 − 1, 0) n2µ for n2 ≥ 2, n1 = 0
(n2, 0) (F) n2α for n2 ≥ 1, n1 = 0
(n2, 1) (S) µ for n2 ≥ 2, n1 = 1

(1,1) (S) 2µ for n2 = 1, n1 = 1
(1,0) (S) µ for n2 = 1, n1 = 0

other nodes via the arrival process. If the job arrival process
to the cluster is a MAP(ma, D0, D1), the arrival process to a
single node can also be described as a MAP. Under round-
robin scheduling, the parameters are

C0 =


D0 D1 . · · ·
. D0 D1 · · ·
...

...
. . .

. . .
. . · · · D0

 , C1 =


0 0 · · · 0
0 0 · · · 0
...

...
. . . 0

D1 0 · · · 0

 . (3)

These matrices are of size cma, where c is the number of
nodes, such that c−1 jobs are assigned to the non-tagged
nodes, as captured by C0, between two consecutive arrivals
to the tagged node, captured by C1. Also, under random
scheduling, the arrival process has parameters C0 = D0 +
(1− c−1)D1, C1 = c−1D1.

5 EFFICIENT RESPONSE-TIME COMPUTATION

In Section 4 we obtained the PH representation (αser, Sser) of
the service-time distribution. Assuming we have a PH rep-
resentation (αwait, Swait) for the waiting-time distribution,
and given the independence between service and waiting
times, we can obtain the PH representation (αres, Sres) of the
response-time distribution as

αres = [αwait (1−αwait1)αser], Sres =

[
Swait (−Swait1)αser
0 Sser

]
.

This representation captures that for some jobs the response
time is made of a first period of waiting followed by a period
of service, while others start service directly. With this repre-
sentation we can readily compute response-time percentiles
and moments. This section therefore focuses on computing
the PH representation (αwait, Swait) of the waiting-time dis-
tribution, for which we propose a numerically-efficient al-
gorithm that allows us to consider parallel jobs with a large
number of subtasks. In fact, this method is applicable for
general MAP/APH/1 queues, where APH stands for acyclic
PH distributions. APH distributions are characterized by
having an upper-triangular generator matrix, which is a key
feature of the job service time representations PH(αser, Sser)
introduced in the previous section.

5.1 The Waiting-time Distribution
The waiting time of a job is the time period between its
arrival and the time its service starts. To determine the
waiting-time distribution, we follow the approach in [20],
observing the queue only during the busy periods, and
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defining a bivariate Markov process {(X(t), J(t))|t≥0}.
Here the age X(t) is the total time-in-system of the job in
service, and the phase J(t)=(A(t), N2(t), N1(t)) holds the
joint state of the arrival process A(t) and the service process
(N2(t), N1(t)), as defined in Section 4. The phase J(t) thus
takes values in a set of size m=mams. Recall that, for job-
size n, in the no-replication case ms=n, while under task-
and job-level replication ms=n(n+3)/2. Instead, the age
X(t) takes values in [0,∞), increasing linearly with rate
1 if no service completions occur. In case of a service com-
pletion, X(t) suffers a downward jump, with its new value
being equal to the waiting time of the job starting service.
The service completion or failure of the job in service triggers
the job in front of the queue to start service, while the service
completion or failure of a subtask does not necessarily trigger
the start of a new job service.

To determine the PH representation (αwait, Swait) of the
waiting-time distribution, we rely on the stationary dis-
tribution ρ(x) of the (X(t), J(t)) process, which has a
matrix-exponential representation [20] ρ(x)=ρ(0) exp(Tx),
for x>0. The m×m matrix T can be found as the solution to
the matrix integral equation

T = Q⊗ Ima
+
∫∞
0 exp(Tt)(Π⊗ exp(D0t)D1)dt, (4)

where Q and Π are ms×ms matrices that describe the evo-
lution of the service phase process. The off-diagonal entries
ofQ hold the transition rates, between the job service phases
NJ , not associated with the start of a new job service, while
Π holds the transition rates associated with a job service
completion or failure, during a busy period. The diagonal
entries of Q are set such that Q+Π is the generator of the
service phase process [20], [21]. From the definition of Q we
see that it is in fact equal to Sser since it holds transition
rates that are not accompanied by a job service completion
or failure. Similarly, Π=−(Sser1)αser, as this matrix holds
the rates with which a job completes service or fails, and
a new one starts with phase according to αser. Notice that,
since αser has a single nonzero entry, Π has a single nonzero
column. Also, as pointed out in Remark 1, the matrix Sser,
thus Q, has an upper-triangular structure. We will exploit
these features in developing an efficient algorithm to solve
Eq. (4) to find T , as described in Section 5.2.

To complete the matrix-exponential representation
ρ(x) = ρ(0) exp(Tx), we need to find the vector ρ(0),
which is the stationary distribution of the phase at the
beginning of a busy period. This vector can be found as
the solution to the equation

ρ(0) = ρ(0)
∫∞
0 exp(Tt)((Sser1)⊗ exp(D0t))dt(−D−10 )(αser ⊗D1).

(5)

This equation describes how the phase starts a busy period
according to ρ(0), evolves with T and at some time t a
service completion occurs with rate Sser1, which terminates
the busy period. Next, the process simply keeps track of
the arrival phase, which evolves according to D0, until a
new job arrives with rates in D1, and starts service accord-
ing to αser. To solve this equation we define the matrix
P=

∫∞
0 exp(Tt)(Ims

⊗ exp(D0t))dt, and integrate by parts
to obtain

TP + P (Ims ⊗D0) = −Im.

This is a Sylvester matrix equation that can be solved in
O(m3) time with the Hessenberg-Schur method [22]. After
finding P we can re-write (5) as the linear system

ρ(0)=ρ(0)P ((Sser1)⊗ Ima
)(−D−10 )(αser ⊗D1),

which we can readily solve to find ρ(0).
Relying on (ρ(0), T ) we can obtain the PH representa-

tion (αwait, Swait) of the waiting time distribution as follows.
Let σ be the steady-state marginal distribution of the phase
process J(t), thus [20]

σ =

∫ ∞
0
ρ(t)dt = −ρ(0)T−1.

Also, let ϕ be the probability that when the current state is
(t+dt, i), the next return to a state with age in the interval
[t, t+dt] is by way of a downward jump, thus [21]

ϕ=

∫ ∞
0

exp(Tt)(Π⊗ exp(D0t)D1)dt1=(T −Q⊗ Ima
)1.

The PH representation of the waiting time is given by [21]

αwait = υσ ◦ϕ/((σ ◦ϕ)1), Swait = Λ−1T ′Λ,

where ◦ stands for the Hadamard product [23], ′ denotes the
matrix transpose, Λ is a diagonal matrix such that Λ1=α′wait,
and υ is the probability that a job has to wait. For the sake
of completeness, we recall the computation of υ, by first
defining η0 to be the number of service completions in a
busy period, and η1 the number of arrivals in a not-busy
period, respectively. Their expected values can be obtained
as [21, Section 7.2]

E[η0] = −ρ(0)T−1(Π⊗ Ima)1/ρ(0)1,

and E[η1]=1, since an arrival during a not-busy period oc-
cupies the whole computing node, initiating a busy period.
Thus the probability that a job has to wait is

υ=(E[η0]−1)/(E[η0]−1+E[η1])=1−1/E[η0],

since, in a cycle made of one busy and one not-busy period,
E[η0]−1 is the expected number of jobs that have to wait,
and E[η0]−1+E[η1] is the expected number of job arrivals.

5.2 Computing the Matrix T
The standard method [20] to solve Eq. (4) is iterative. How-
ever, different from the numerical integration used in [20],
we follow [24] to define the matrix

L =

∫ ∞
0

exp(Tt)(Ims
⊗ exp(D0t))dt,

such that Eq. (4) can be written as

T = Q⊗ Ima + L(Π⊗D1). (6)

Integrating L by parts we obtain the equation

TL+ L(Ims
⊗D0) = −I. (7)

Thus, we compute the T matrix iteratively starting with
T0=Q⊗ Ima

, and in the kth iteration solving

TkLk + Lk(Ims ⊗D0) = −I (8)

to find Lk. The iteration continues with Tk+1=Q ⊗
Ima

+Lk(Π ⊗ D1) until convergence is reached. Eq. (8) is a
Sylvester matrix equation that can be solved in O(m3) time
with the Hessenberg-Schur algorithm [22].
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TABLE 4: Computation times (sec) for jobs with 50 subtasks

Arrivals
(SCV) U Full BS BW Ratio

R-BS R-BW

HE2

(SCV=2)

0.2 3583.6 91.8 1.7 39.0 2108.0
0.5 7310.9 188.6 3.4 38.8 2150.3
0.9 34634.0 878.0 15.8 39.4 2192.0

HE2

(SCV=10)

0.2 4675.6 114.1 2.1 41.0 2226.5
0.5 13041.3 325.5 6.0 40.1 2173.6
0.9 / 915.2 15.9 / /

MAP2

(SCV=10)
(decay = 0.1)

0.2 4613.5 121.3 2.0 38.0 2306.8
0.5 13488.8 342.5 5.8 39.4 2325.7
0.9 / 942.8 15.2 / /

MAP2

(SCV=10)
(decay = 0.9)

0.2 5174.8 120.8 2.3 42.8 2249.9
0.5 32208.6 742.8 13.2 43.36 2440.0
0.9 / 3853.5 64.2 / /

5.3 Exploiting Restricted Transitions
As the time complexity to solve Eq. (8) is cubic in m, and
m increases quadratically with the number of subtasks n,
finding T becomes computationally expensive when consid-
ering instances with large job size n. We therefore introduce
an efficient solution method to exploit the inner structure of
the matrices Q and Π.

We consider a two-step approach. In the first step we
exploit the structure in Π=−(Sser1)αser, which has a single
non-zero column since αser has a single non-zero entry.
This in turn implies that the term L(Π⊗D1) in Eq. (6)
has only r=ma non-zero columns. As a result, the iteration
Tk+1=Q⊗ Ima

+Lk(Π⊗D1) only affects the first r columns
of T . We can then proceed as in Appendix A to re-state
Eq. (7) as the Sylvester matrix equation (10) where the
unknown matrix Y is of size m×r rather than m×m as
in Eq. (7). Thus, using the Hessenberg-Schur method [22],
we can solve Eq. (10) in O(5m3/3) time, where this leading
term is due to the Hessenberg decomposition of T . Since
solving the original Eq. (7) requires O(115m3/6) time, this
step can be expected to provide a significant reduction in
computation time, especially for large block-size m.

In the second step we exploit the upper-triangular struc-
ture in Q=Sser. The key idea is to replace the Hessenberg
decomposition required to solve Eq. (10) by a more efficient
method that solves a triangular system of sizem and applies
a rank-r correction by means of the Woodbury identity. The
solution of such system requires O(rm2) time, and this is
done to find each of the r columns of X in Eq. (11), thus
taking O(r2m2) time to solve Eq. (11), which is equivalent
to Eq. (7), as detailed in Appendix B. This is a significant
improvement compared to the standard method, which has
a time complexity cubic in m, especially since r is n2 times
smaller than m, and n is the job size. The next section
reports experiments that illustrate how significant the gains
obtained with this method are.

5.4 Evaluation
To illustrate the efficiency of the proposed approach to
compute the matrix T we compare it against the solution
with the standard method described in Section 5.2, which
we label Full. As the proposed method relies on the two
steps described in Appendices A and B, we present the
results considering only the method in Appendix A, labeled
BS, and the overall method, labeled BW.

The experiments were performed in MATLAB on an
Intel Core i7-3770 machine, running at 3.4 GHz and with

TABLE 5: Computation times (sec) for jobs with 100 subtasks

Arrivals
(SCV) U BS BW Ratio

HE2

(SCV=2)

0.2 5130.8 17.0 301.8
0.5 8735.6 35.1 248.9
0.9 / 156.8 /

HE2

(SCV=10)

0.2 5219.7 20.3 257.1
0.5 15237.1 56.3 334.2
0.9 / 184.2 /

MAP2

(SCV=10)
(decay = 0.1)

0.2 5372.1 21.4 251.0
0.5 18817.3 57.7 326.1
0.9 / 177.9 /

MAP2

(SCV=10)
(decay = 0.9)

0.2 5696.3 22.4 254.3
0.5 / 134.6 /
0.9 / 595.2 /

16 GB of memory. We consider jobs with 50 and 100
subtasks, service rate µ=1, and failure rate α=0.1. For
the arrival process, we consider renewal processes with
two-phase Erlang (ER2) and hyper-exponential (HE2) inter-
arrival distributions, and general order-2 MAPs (MAP). We
thus cover a broad range of behaviors in terms of variability,
measured by the squared coefficient of variation (SCV),
defined as C2

X=Var(X)/E2[X] for a random variable X .
The ER2 and HE2 distributions represent the SCV=0.5 and
SCV≥1 cases, respectively, while the MAP considers auto-
correlated arrivals. The parameters of the HE2 distribution
are computed using the moment-matching method in [25],
while the matrices D0 and D1 of the MAP are obtained with
the method in [26]. We consider MAPs with decay rate of the
auto-correlation function equal to 0.1 and 0.9, and SCV equal
to 10. With these parameters, the size of the phase space is
m=2650 for 50 subtasks and m=10300 for 100 subtasks,
while the number of nonzero columns in A0 is r=2 for both
cases. We focus on task-level replication as the results are
similar for the job-level replication case.

Table 4 summarizes the computation times to find the
matrix T for the case of 50 subtasks. The rows in Table 4
consider different arrival processes and utilization levels
U , as shown in the first two columns. We set a time limit
of 10 hours, and the results not shown here correspond
to cases where the computation times exceeded this limit.
We observe that the BS method reduces the computation
times by two orders of magnitude compared with the Full
method, while the BW method offers even larger reductions,
of three orders of magnitude compared to the Full method.
This can also be observed in the last two columns (Ratio),
where we report the ratio between the Full and the BS and
BW methods. Specifically, the computation times with the
BW method are 2100-2500 times shorter than with the Full
method, while the BS method offers a reduction of only 35-
45 times.

Table 5 shows similar results for the 100-subtask case,
but the results for the Full method are not reported since its
computation times exceeded 10 hours in all instances. We
show in the last column the ratio of the computation times
between the BS and the BW methods, where we observe
that BW offers 240-340 shorter execution times than the BS
method. Here and in the previous set of results we observe
that the computation times of all the methods increase when
the utilization, the arrival process variability and its auto-
correlation increase. In the toughest case considered here,
where the utilization is 0.9 and the arrival process SCV
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Fig. 4: Reliability under different replication modes

and decay rate of the auto-correlation function are 10 and
0.9, respectively, only the BW method is able to provide a
result, and it does so in just under 10 minutes. In most of the
other instances, its computation times are under 1 minute,
highlighting its ability to efficiently compute T by exploiting
the structure in the matrices Π and Q.
Remark 2. Notice that the solution method proposed here is

not restricted to the analysis of parallel jobs considered
in this paper. For instance, using the results in [27],
any acyclic PH distribution (APH) can be transformed
to have an entry vector τ with all the mass in the
first phase, and an upper-triangular matrix S. Thus,
any MAP/APH/1 queue will fit within our assumptions
regarding the structure of the Q and Π matrices.

6 EVALUATING THE IMPACT OF REPLICATION

With the proposed model, and the efficient solution method
introduced in the previous section, we are now in a position
to evaluate the effect of replication on the reliability and
response times offered by the parallel-job computing cluster.
In particular, we are able to determine how replication
impacts these metrics under different system conditions,
such as the system utilization, the correlation across replicas,
and the job arrival process.

In the following we make use of the no-replication (NR)
case as the baseline. Thus we consider scenarios where we
fix the reliability for the NR case (NR-reliability) and its
utilization (NR-utilization). The mean service rate µ is set
to 1, while the failure rate α is set to achieve a target NR-
reliability. Similarly, the arrival rate is set to achieve a target
NR-utilization. To make the comparison fair, the NR setup
has as many servers as the setup with replication, which
implies that, for job-size n, for every computing node with
2n servers in the scenarios with replication, there are two
computing nodes in the NR case, each with n servers.

6.1 The Impact of Replication on Reliability
The reliability is measured as the probability PS that a
job completes service successfully. When the replicas fail
independently, the reliability depends only on the job size n,
the service rate µ, and the failure rate α. In the no-replication
case, it is given by (µ/(µ+α))n, while under task-level
replication it is equal to (1−(α/(α+µ))2)n, and for job-
level replication it is 1−(1−(µ/(α+µ))n)2. Instead, when
the failures between replicas are correlated, the reliability is

PS = −αserS
−1
ser sser,
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Fig. 5: The effect of canceling - NR-reliability:90%

where (αser, Sser) is the PH representation of the job service-
time distribution, defined in Section 4.4, and sser=−Sser1.

Figure 4(a) compares the job reliability under different
replication modes, considering the case where the job-size
n is 20, the NR-reliability is 90%, and the correlation p
varies from 0 to 1. We observe that both task- and job-level
replication improve the job-reliability under most values of
p, with task-level having a slightly higher reliability. Also,
the improvement in reliability decreases as the correlation
p increases. Under task-level replication, the reliability de-
creases until it becomes equal to the case without replica-
tion when the correlation reaches 1. For instance, task-level
replication improves the job reliability from 90% to 99.94%
when p=0, but decreases to 94.85% when p=0.5, and drops
back to 90% for p=1. This effect is more clear in Figure 4(b),
where the NR-reliability is decreased to 50%. Here the re-
liability achieved with task-level replication is significantly
larger for small to medium correlations, and it is always
better than no-replication, except under perfect correlation.
However, we observe that the reliability achieved under
job-level replication is much lower than the one achieved
under task-level replication. For instance, when p is 0.1, the
reliability achieved under task-level replication is 91.46%,
while under job-level replication it is just 72.22%. This is
because under job-level replication, a single subtask failure
causes the failure of a whole job-replica, while in task-level
replication the job fails only if both replicas of a subtask fail.

Figure 4 also offers a less expected, and somewhat
counter-intuitive, result. While job-level replication clearly
improves the reliability under a broad range of the correla-
tion, it actually performs worse than the no-replication case
for correlations close to one. The cause of this behavior lies
in the lack of synchronization between the two job replicas.
While in task-level replication the successful completion of
a task immediately cancels its sibling, in job-level replication
this synchronization does not occur. As a result, the sibling
task continues in execution and may eventually fail, causing
the failure of its job replica. This situation is exacerbated
when the failure rate and correlation are high, degrading the
job reliability until it becomes worse to replicate at the job
level than to not replicate. This effect however only arises
when the correlation is close to one, which is not to be
expected in application-level failures.

6.2 Comparing against Replication Without Canceling
To evaluate the effectiveness of canceling, we compare
the response times obtained with and without replication,
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considering uncorrelated failures (p=0) and HE2 arrivals
(SCV=2) as an example. Here we use the same notation for
the arrival process (Exp, ER2, HE2 and MAP) introduced in
Section 5.4. Figure 5 depicts the response-time complemen-
tary CDF (CCDF) for the system without replication (NR),
with replication with canceling (C), and without canceling
(NC). For brevity we consider task-level replication only.
The results without canceling are obtained with a simulation
model as this is not the focus of this paper. Here we consider
an instance with job-size 20 and NR-reliability 90%. In
Figure 5(a), where the NR-utilization is just 0.1, it can be
seen that the introduction of replication may reduce the
response-time tails compared to the no-replication case. This
reduction is caused by the possibility of selecting the first
replica that completes service. In addition, the introduction
of canceling reduces the system load, significantly reduc-
ing the job response times, especially their tail. Further,
increasing the NR-utilization to 0.3, which guarantees that
the system with replication without canceling is stable, as
shown in Figure 5(b), task-level replication with canceling
is able to achieve a shorter response-time tail than with-
out replication, while the system without canceling offers
a much longer tail. The effect of canceling is thus more
evident in this scenario as the baseline load is higher and
the introduction of replication without canceling introduces
enough additional load to cause large response times.

6.3 The Impact of Replication on the Response Times

We now look further into the impact of replication on the
offered response times, and how this effect depends on the
system parameters. In particular, we focus on the response-
time percentiles, where the ith percentile of the response-
time distribution, RTi, stands for the value x such that
i% of the jobs experience a response time of at most x,
for i=1, . . . , 99. We consider a case with job-size 20, HE2

arrivals (SCV=2), NR-utilization of 0.5, and NR-reliability
of 90%. Figures 6(a) and 6(b) show how the utilization
and RT95, respectively, change with an increasing failure
correlation p. Clearly, both task- and job-level replication
increase the system utilization, but job-level replication adds
a much larger load, increasing the utilization from 0.5 to
between 0.91 and 0.82. The effect of this additional load is
clearly visible in Figure 6(b), which shows how the RT95

shoots up under job-level replication, being one order of
magnitude larger than under no-replication and task-level
replication.
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We now decrease the NR-reliability from 90% to 50%,
and display the obtained utilization and RT95 in Figures 7(a)
and 7(b). In this case both task- and job-level replication
increase the utilization compared to the no-replication case.
In fact, when the correlation p is below 0.7, the additional
load under job-level replication makes the system unstable.
Recall that the NR-utilization is 0.5 in this case. Moreover,
Figure 7(b) shows that the RT95 achieved under task-level
replication is larger than without replication when the cor-
relation p is below 0.7. This clearly differs from the previous
case where task-level replication improved the RT95 for
every correlation level. This is because of two reasons:

• If the NR-reliability is low and no replication is used,
only short jobs can complete service successfully before
encountering a failure. This causes the response times
under no-replication to be necessarily short.
• Introducing replicas has two effects: first, it increases the

resource utilization, thus increasing the response times;
second, it allows the selection of the first replica that
finishes, potentially reducing the response times. If the
NR-reliability is low, as in Figure 7, one of the replicas
will likely fail and the first effect will be dominant, in-
creasing the response times. Instead, if the NR-reliability
is high, as in Figure 6, then both replicas are likely to
finish service, allowing the selection of the first result.

Moreover, we notice that both the utilization and the
RT95 decrease as the correlation p increases. Here again,
as the correlation p increases it is more likely that the
failure of a subtask leads to the failure of its replica, al-
lowing only short jobs to complete service. Also, the larger
correlation reduces the system load, allowing for shorter
response times. In Figure 7(b) we also observe that, under
large correlation values, even though the improvement in
reliability is limited, task-level replication is still able to
reduce the response times, thanks to its ability to select the
first task-replica that completes.

6.3.1 The Effect of the Baseline Utilization

As replication, even with canceling, increases the system
load, it is natural to expect that its benefits can only be
exploited as long as the NR-utilization is not too high. We
now explore some scenarios to study how high can the
NR-utilization be for replication with canceling to effec-
tively reduce the response times. Figure 8(a) compares the
RT95 achieved under different NR-utilization levels, for the
case with job-size 20, NR-reliability of 90%, HE2 arrivals
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(SCV=2), and uncorrelated failures (p=0). Clearly, job-level
replication achieves the highest RT95, increasing the re-
sponse times compared to no-replication, and causing the
system to become unstable when the NR-utilization is larger
than 0.5. Instead, task-level replication reduces the RT95

compared to no-replication as long as the NR-utilization
is 0.6 or less. For larger values of the NR-utilization, task-
level replication increases the RT95, until the point that,
under a 0.9 NR-utilization, the RT95 is actually one order
of magnitude larger than without replication. It is still
significant, though, that task-level replication causes just a
small increase in the RT95 for an NR-utilization as high as
0.7, while offering a much better reliability (99.95%). If the
NR-reliability decreases to 50%, as depicted in Figure 8(b),
task-level replication is able to reduce the RT95, but only for
an NR-utilization of up to 0.2. For NR-utilizations between
0.3 and 0.5, task-level replication offers a larger RT95 than
without replication, and higher values will make the system
unstable. This is again the result of the low NR-reliability.

We now go back to the case with NR-reliability 90%, as
in Figure 8(a), but introduce a failure correlation of p=0.5,
and depict the results in Figure 8(c). Comparing Figures 8(a)
and 8(c), we observe that task-level replication reduces the
RT95 up to a higher NR-utilization (0.7) in the correlated
case than in the uncorrelated case (0.6). This is because
a larger correlation implies a higher probability that the
failure of one replica causes its partner to fail, leading to a
lower utilization under task-level replication, and therefore
shorter response times. We thus observe that the impact of
replication not only is affected by the NR-utilization, but
by the NR-reliability and the correlation among the task
failures. The results indicate that under low to medium
NR-utilizations, task-level replication is able to improve the
response times, as long as the NR-reliability is high. A low
NR-reliability scenario can benefit from replication in terms
of reliability, but the room for improving the response times
is more limited.

7 SLO-DRIVEN RESOURCE PROVISIONING

As we have seen, while task-level replication is effective in
improving the reliability, its impact on the response times
offered depends on a number of factors. This is particularly
relevant for a system that aims to fulfill a service-level
objective (SLO) RTmax defined as a bound on a response-
time percentile. Thus, the questions we want to answer
in this section are whether replication should be adopted or

not, and what is the minimum number of computing nodes c∗

necessary to achieve a given SLO RTmax. Recall that, in the
case without replication n servers are needed to process a
job of size n, while task-level replication requires 2n. As
defined in Section 3.2, in the case without replication, each
computing node is able to process one parallel job of size n.
Under task-level replication, instead, two computing nodes
are needed to process each job, as a total of 2n servers are
needed in this case. Also, we assume that a maximum of
ncmax servers can be used, thus making up at most cmax
computing nodes. Round-robin or random scheduling is
used to allocate the incoming jobs to the computing nodes.
Relying on the proposed analytical model, this resource
provisioning problem can be formulated as:

c∗ = Min. c, (9)
s.t. RTi(c,Rchoice) ≤ RTmax,

%(c,Rchoice) < 1,

c ∈ {1, 2, . . . , cmax},
Rchoice ∈ {0, 1},

where the binary variable Rchoice is equal to one if task-
replication is adopted, or to zero if no-replication is im-
plemented. Also, RTi(c,Rchoice) is the ith percentile of
the response-time distribution obtained with c computing
nodes and Rchoice replication mode. To solve this problem,
we consider two separate problems, one for each value
of Rchoice. Since, for each of these problems, the percentile
RTi(c,Rchoice) is a non-increasing function in c, which is the
objective function, Algorithm 1 shows how each of these
problems can be solved with a binary search algorithm [28]
restricted to the integers {1, 2, . . . , cmax}. We then choose
the replication strategy that requires the least number of
computing nodes. In case of a draw, we always choose to
replicate to achieve a higher reliability.

We first consider an instance with round-robin schedul-
ing, exponential (Exp) inter-arrival times, mean arrival rate
of 1.2, job-size 20, NR-reliability 90%, and a total of cmax=25
nodes, i.e., 500 servers in total. As depicted in Figure 9(a), we
evaluate different RTmax objectives in the set [2, 2.5, . . . , 10].
The missing results correspond to cases where the required
RTmax cannot be achieved with the given maximum of 25
nodes. The first obvious trend is that the minimum number
of nodes required decreases as the SLO RTmax increases.
More interestingly, we observe a significant difference be-
tween no-replication and task-level replication. In fact, tight
RTmax objectives can only be achieved with replication.
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Algorithm 1 Computing the optimal number of servers

Require: cmax, Rchoice, RTmax, i
1: if RTi(cmax, Rchoice) > RTmax then
2: return The required RTmax cannot be achieved.
3: else
4: cmin = 1
5: while cmax − cmin > 1 do
6: c = b(cmin + cmax)/2c
7: if RTi(c,Rchoice) > RTmax then
8: cmin = c
9: else

10: cmax = c
11: end if
12: end while
13: end if
14: return c

2 4 6 8 10

5

10

15

20

25

RTmax

N
um

be
r

of
no

de
s

Task: Exp MAP
NR: Exp MAP

(a) NR-reliability: 90%

2 4 6 8 10

5

10

15

20

25

RTmax

N
um

be
r

of
no

de
s

Task: Exp MAP
NR: Exp MAP

(b) NR-reliability: 50%

Fig. 9: Minimum number of computing nodes needed to
achieve a response-time SLO under different replications
modes and arrival processes

For instance, the system with task-level replication can
achieve an RTmax as low as 3.5, while the system without
replication cannot achieve an RTmax below 6.0. In addition,
under the tightest achievable SLO by all replication modes,
RTmax=6.0, task-level replication requires 12 computing
nodes, while no-replication needs 18 nodes, a 33% more. As
expected, these differences decrease as the objective RTmax
becomes less strict.

Figure 9(a) also depicts the minimum number of nodes
required under MAP arrivals, assuming an SCV of 10 and
a decay rate of the auto-correlation function of 0.9. Either
with or without replication, many more nodes are required
to handle the bursty workload introduced by MAP arrivals,
compared to the numbers needed under Exp arrivals, to
achieve the same response-time SLO. For instance, un-
der the tightest achievable SLO with task-level replication,
RTmax=3.5, 10 computing nodes are required to handle
exponential IATs, while 16 nodes are needed to cope with
the variability and correlation in the workload introduced
by the MAP arrivals, a 60% more.

In Figure 9(b) we decrease the NR-reliability to 50%.
In contrast with the results in Figure 9(a), we observe
that a loose response-time SLO can be achieved without
replication with fewer computing nodes than with task-level
replication. In this specific case, this occurs for SLOs larger
than 6.5. This is different from Figure 9(a), where task-level
replication always requires less or the same number of com-

TABLE 6: Solution times for the optimization problem (sec)

Arrival Mode Achievable? Mean Std Min Max
Exp NR No 0.30 0.20 0.19 0.76
Exp Task No 5.13 0.09 5.01 5.53
Exp NR Yes 16.42 0.18 16.22 18.83
Exp Task Yes 11.79 0.76 11.36 14.74

MAP NR Yes 7.90 2.95 6.21 18.70
MAP Task Yes 229.34 14.68 195.77 274.92

puting nodes than without replication. This difference is due
to the low NR-reliability (50%) considered in Figure 9(b),
as in this case only short jobs can complete service in the
system without replication. The benefits of replication in
this case are thus limited to the improvement in reliability.
However, if a tight SLO is considered, in this case RTmax
below 6, only task-level replication is able to achieve it.

Table 6 summarizes the computation times required to
solve the optimization problem on the machine described
in Section 5.4, solving each scenario in Figure 9(a) 50 times.
In the cases where the RTmax objective is not achievable, the
computation times are much lower as the algorithm only
solves the model once to check if the RTmax limit is achiev-
able. The first two rows in Table 6 illustrate this, as these
times are much lower than the ones in rows 3-4, where the
optimization method actually performs the binary search.
Here we also observe that the mean computation times
under task-level replication and Exp arrivals is lower than
under no-replication. This is because in the no-replication
mode, the maximum number of nodes available is twice as
much as for task-level mode, thus requiring more iterations
when applying the binary-search algorithm. Rows 5-6 show
the total computation times under MAP arrivals. Different
from the scenarios with Exp arrivals, the computation times
under task-level replication are much larger than under no-
replication, which is caused by the longer model evaluation
time required at each iteration. Thanks to the efficient evalu-
ation proposed for the model and the quadratic convergence
of the binary-search method, the resource allocation method
requires fairly short times to find the optimal number of
resources and whether replication is to be adopted or not.

7.1 Managing the Response-Time Distribution
The provisioning problem (9) allows us to determine the
minimum number of computing nodes needed to achieve a
certain response-time percentile i. This feature can therefore
be used to manage the response-time distribution, i.e., it
is possible to define SLOs for different percentiles of the
distribution, which can result from a set of requirements
specified by the system users. In addition, the first constraint
in (9) can refer to other measures on the response-time
distribution, such as the mean or the standard deviation. To
illustrate this we consider a similar case as in the previous
section, with MAP arrivals, and we solve (9) setting three
different response-time SLOs: mean response-time of 4.0,
RT90 of 4.0, and RT95 of 3.5. Under these three SLOs, the
minimum number of nodes required are 10, 12 and 16,
respectively. Figure 10(a) compares the response-time CCDF
obtained in each of these cases. While each of the SLOs is
attained in each of the three cases, we see how the overall
response-time distribution changes, particularly reducing
the tail as the SLO is set on the 90th percentile instead of
the mean, and further when it is set on the 95th percentile.
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Fig. 10: Response-time CCDF and PDF achieved under
different response-time SLOs

While the interest in the response-time percentiles is
based on offering an upper bound on the response time
faced by a large proportion of the jobs, other response-
time metrics are also relevant. In particular, the standard
deviation σR provides a measure of the variability of the
response times around their mean. Thus, when provisioning
resources it may be relevant to ensure that the standard
deviation of the response times is bounded by a limit σRmax.
To show the impact of using σR to size the cluster, in
Figure 10(b) we compare the response-time density function
(PDF) obtained by setting an SLO σRmax of 4 and 1 on the
standard deviation, while keeping an SLO on the mean
response time of 1 for both cases. The minimum number of
nodes needed are 10 and 14, leading to a σR of 1.76 and 0.82,
respectively. The difference is clearly shown in Figure 10(b),
where the response times obtained with 10 nodes are spread
out over a larger range of values than when 14 nodes are
used. The response times offered by the cluster in the second
case can thus be expected to be more consistent than in the
first scenario. The resource provisioning scheme is therefore
able to consider a number of system conditions, such as
NR-reliability and NR-utilization, and how they affect the
achievement of response times that comply with different
SLOs, defined as percentiles or distributional moments.

8 CASE-STUDY: THE RICC LOGS

In this section, we evaluate the proposed model and the
resource provisioning strategy by considering realistic traffic
patterns from a parallel cluster. We make use of logs from
the RIKEN Integrated Cluster of Clusters (RICC), available
on the Parallel Workloads Archive [9]. We parameterize
the service process of our model with single-task jobs that
completed service successfully, estimating a subtask service
rate µ of 0.3245 tasks per hour. We also estimate a failure
probability of 3.63%, based on which we obtain a failure
rate α of 0.0122 tasks per hour. We observe 112 classes of
jobs with job sizes ranging from 1 to 8192. Among multi-
task jobs, those with job-size 32 are the most common,
accounting for 30.3% of all multi-task jobs. As job arrivals
show a strong daily and hourly cycle, we divide the arrival
data into sets according to the day of the week and the
hour of the day. As an example, we consider the samples
from 11:00 to 12:00 on Wednesday, where the inter-arrival
times (IATs) have a squared coefficient of variation (SCV)
of 4.69. We use the method in [29], as implemented in
jPhase [30], to find a hyper-exponential distribution with r
phases (HEr). We test the goodness-of-fit of the fitted CDFs

IAT p-value KS

Exp 8.3217E−10 0.6519

HE2 2.7839E−5 0.4690

HE3 0.0623 0.2612

HE4 0.0623 0.2612

HE5 0.0623 0.2612

HE6 0.0623 0.2612

TABLE 7: KS test
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with the Kolmogorov-Smirnov (KS) test [31], and show in
Table 7 the p-value and the maximum absolute difference
between the CDFs for the exponential (Exp) and various
HEr distributions. The Exp and HE2 assumptions fail the
Kolmogorov-Smirnov test, while the HEr with 3 or more
passes the test under typical significance levels. Since the
improvement in the p-value and the KS statistic is limited
for 4 or more phases, we choose the HE3 representation, and
compare its CCDF with that of the real trace and the fitted
Exp in Figure 11. Clearly, the HE3 distribution captures the
characteristics of the trace much better than the exponential,
especially its long tail along a wide range of values.

To further emphasize the importance of considering the
variability of the IATs in sizing the cluster, we use the
provisioning method in Section 7 to determine the number
of computing nodes to achieve an RT95 of 10 hours. We
consider the RICC logs for the period from 07:00 to 18:00 on
Tuesdays, using both HE3 and Exp distributions to represent
the IATs for each hour. In Figure 12(a) we show the observed
arrival rate and SCV, and in Figure 12(b) the minimum
number of nodes needed to satisfy an RT95 SLO of 10 hours,
under both no-replication and task-level replication. The
first clear observation is the huge difference in the number
of computing nodes needed between HE3 and Exp arrivals.
The exponential assumption requires significantly fewer
nodes to satisfy the response-time SLO, as more nodes are
needed to handle the variability in the IATs introduced by
the HE3 arrivals. As a result, if the exponential assumption
is used to dimension the system, we may expect a large
violation of the response-time SLO, as the resources are not
enough to cope with the arrival process variability.

Now, focusing on the HE3 case, the results show that
the effect of the arrival rate is dominant as the trend of
the minimum number of computing nodes is similar to the
trend of the arrival rate. For instance, the largest number
of servers is required during the hour 15, which has the
highest arrival rate. However, we observe that the SCV has
a very significant effect too. For example, comparing hours
8 and 11 under HE3 arrivals and task-level replication, the
arrival rate slightly increases by 7.44% from hour 8 to hour
11, but the minimum number of nodes needed increases
dramatically from 4 to 18. This is caused by the large SCV
during hour 11, which is 5.61, while that of hour 8 is only
1.22. If we look at the provisioning under the exponential
assumption, the number of nodes needed for both hours 8
and 11 is 4, as the IAT variability is completely ignored.

In Figure 12(b) we observe that task-level replication
requires more computing nodes than no-replication. How-
ever, if we tighten the response-time SLO from 10 to 7.1, as
in Figure 12(c), task-level replication requires fewer nodes
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Fig. 12: Time dependent resource provisioning

than no-replication. Also, task-level replication increases the
reliability from 54.8% to 98.9%. Thus, on top of the reliability
gains, task-level replication has the potential to reduce the
resource requirements under tight response-time SLOs.

9 CONCLUSION

In this paper we evaluate the ability of concurrent replica-
tion with canceling to improve the reliability and response
times of parallel jobs subject to failures. We propose a
stochastic model to obtain the response-time distribution,
for which we derive an efficient solution method to consider
jobs with a large number of subtasks. We demonstrate that
task-level replication with canceling has the potential to
reduce latency under a low to medium utilization, as long
as the task reliability is high. Scenarios with a low task relia-
bility can benefit from replication in terms of reliability, but
the room for improving the response times is more limited.
When the task failures are correlated, the improvement in
reliability is more limited, but task-level replication is still
able to reduce the response times. Building on the proposed
model, we develop a resource-provisioning strategy that
determines whether replication should be adopted or not,
and provides the minimum number of computing nodes
needed to comply with an SLO on the response times. The
results highlight that ignoring the statistical characteristics
of the arrival process may lead to large SLO violations.
We also observe that, in addition to the gains in reliabil-
ity, task-level replication has the potential to reduce the
resource requirements for tight response-time SLOs. While
the focus in this paper has been on parallel jobs that are
processed synchronously, future work will consider the case
of asynchronous parallel jobs, where we expect the benefits
of replication to be stronger, as the additional load on the
system should decrease due to the finer granularity with
which resources become available.

APPENDIX A
EXPLOITING THE STRUCTURE IN Π

As the term L(Π ⊗ D1) in (6) has only r=ma non-zero
columns, the iteration Tk+1=Q ⊗ Ima+Lk(Π ⊗ D1) only
affects the first r columns of T , the last m−r columns being
given by the corresponding columns of T0=Q ⊗ Ima . To

formalize this observation, we write Π ⊗ Ima=ΓK , where
the m×r matrix Γ and the r×m matrix K are given by

Γ = −Sser1⊗ Ir, and K =
[
Ir 0r×m−r

]
.

Letting Y=LΓ, we can rewrite Eq. (6) as

T=Q⊗ Ima
+LΓK(I ⊗D1)=Q⊗ Ima

+Y
[
D1 0r×m−r

]
.

Therefore, it is enough to compute the m×r matrix Y ,
instead of finding the m×m matrix L in each iteration.
Focusing on the first r columns of this equation, we write

T̃ = Q1 ⊗ Ir + Y D1,

where T̃ refers to the first r columns of the matrix T , and
Q1 is the first column of Q. To find Y we solve

TY + Y D0 = −Γ, (10)

which is obtained by post-multiplying (7) by Γ.

APPENDIX B
EXPLOITING THE STRUCTURE IN Q

To exploit the upper-triangular structure in Q, we recall
that the Hessenburg-Schur method to solve Eq. (10) requires
finding the Schur decomposition of D0, i.e., a quasi-upper-
triangular matrix S and an orthogonal matrix V such that
D0=V SV ′. Thus, assuming this is the kth iteration, and
post-multiplying Eq. (10) by V , we have

TkY V + Y V V ′D0V = −ΓV.

Letting X=Y V , F=−ΓV , and replacing Tk by its value
from the previous iteration, we obtain

(Q⊗ Ima
+ Lk−1(Π⊗D1))X +XS = F. (11)

Following [22], the above equation can be solved by
columns, by writing a linear system that involves finding
one or two columns at a time, thanks to the quasi-upper-
triangular nature of S. For the sake of clarity, we assume that
S is upper-triangular, such that each step involves finding
a single column. The more general case of a quasi-upper-
triangular S can be treated similarly.

Using the upper-triangular structure in S we can find
the pth column of X , Xp, by solving the system

(Q⊗ Ima + Lk−1(Π⊗D1) + Sp,pIm)Xp = F p, (12)
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where F̂ p ≡ Fp−
∑p−1
i=1 XiSi,p. Notice that the right-hand

side depends on the first p−1 columns of X , thus we can
start with the first column and proceed forward finding
one column at a time. This is a linear system of size
m and becomes the bottleneck of the Hessenberg-Schur
method, in which a Hessenberg decomposition of the matrix
(Q ⊗ Ima

+Lk−1(Π ⊗ D1)) is used to find Xp. Instead, we
propose to take advantage of the structure in Q. As this
matrix is upper-triangular, the matrix R=Q ⊗ Ima

+ImSp,p
is upper-triangular as well. Moreover, we know from the
previous section that the matrix Lk−1(Π ⊗ D1) can be
written as Lk−1ΓK(I ⊗D1)=Yk−1D1K . The left-hand side
matrix in (12) can then be written as R+Yk−1D1K , and
since Yk−1 is an m×r matrix and D1K is an r ×m matrix,
this expression is a rank-r correction of the upper-triangular
matrix R. We can thus use the Woodbury matrix identity
[32] to write the inverse of the matrix in (12) as

(R+Lk−1(Π⊗D1))
−1

=

R−1−R−1Yk−1(Ir+D1KR
−1Yk−1)−1D1KR

−1.

Further, post-multiplying by F̂ p and recalling that
K=[Ir 0r×m−r], we can write

Xp = (R+ Y K(Ims
⊗D1))−1F̂ p

= R−1F̂ p −R−1Yk−1(Ir +D1R̃Y )−1D1R̃F ,

where R̃Y holds the first r rows of the m×r matrix
R−1Yk−1, and R̃F the first r rows of the vector R−1F̂ p.

As a result, the key step in finding the column Xp is
the solution of the upper-triangular system RZ=[F̂ p Yk−1].
With the Woodbury identity, this can be done in O(rm2 +
r2m+ rm+ r3) time due to the triangular structure of R.
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