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Abstract—Computing clusters have been widely deployed
for scientific and engineering applications to support intensive
computation and massive data operations. As applications and
resources in a cluster are subject to failures, fault-tolerance
strategies are commonly adopted, sometimes at the expense
of additional delays in job response times, or unnecessarily
increasing resource usage. In this paper, we explore concurrent
replication with canceling, a fault-tolerance approach where jobs
and their replicas are processed concurrently, and the successful
completion of either triggers the removals of its replica. We
propose a stochastic model to study how this approach affects the
cluster service level objectives (SLOs), particularly the offered
response time percentiles. In addition to the expected gains in
reliability, the proposed model allows us to determine the regions
of the utilization where introducing replication with canceling
effectively reduces the response times. Moreover, we show how
this model can support resource provisioning decisions with
reliability and response time guarantees.

I. INTRODUCTION

Fueled by the ever-growing demand of computation-
intensive and massive-data operations in scientific and en-
gineering applications, computing clusters (CC) have been
widely deployed, providing a cost-effective, high-performance
environment [1], [2]. A CC is usually composed of tens or
hundreds of processing elements, interconnected by a high-
speed communication network, which provides computing
services either to a single or multiple users. CCs, as any
computing system, are subject to failures, and their overall
reliability deteriorates with increasing scale and complexity
[1], degrading the offered quality of service (QoS). Failures
can be at the application level, also referred to as request
failures, caused for instance by deadlocks, errors in the input
data, communication errors [3], timeouts of resources with
constrained availability, or application outputs exceeding la-
tency requirements. On the other hand, server failures can be
caused by hardware failures, or, in the case of virtualized CCs,
by errors in the management of virtual machines.

To address this problem, various fault-tolerance mecha-
nisms have been developed, among which, checkpoint/restart
has been the most prevailing [4]. In this approach, a failed
request is re-executed, either from the beginning or from
the last checkpoint, on the same server in the case of a
request failure. In the case of a server failure, the clustering
software can switch the request to a standby resource, without
administrative intervention [5]. Although effective to handle
failures, a major concern with this approach is the additional
delay it introduces, degrading the application QoS, which is a
major issue for deadline-driven applications [6], [7]. Moreover,

this approach has been found to impose large overheads and
storage requirements to read and write checkpoints [4], [8].

An alternative approach is to process requests’ replicas
concurrently, improving the reliability as it is sufficient if
one of the replicas succeeds. Concurrent replication can thus
handle unpredictable failures, unless they occur to all replicas
simultaneously. This approach has been recently considered
for deadline-driven and mission-critical systems [6], [9]–[11]
to improve both latency and reliability. For example, [10]
proposes an outlier mitigation strategy by processing requests
clones simultaneously to mitigate the effect of latency. This
approach has become appealing with the observation that most
clusters are highly underutilized. For instance, the overall
utilization of data center servers has been found to be around
18% [12], while traces from the Facebook cluster show that
resources remain idle, with median slot, CPU, and memory
utilizations under 20% [10]. However, concurrent replication
may introduce unacceptable additional load, leading to ex-
cessive resource and energy usage, to the point of degrading
the offered response times (RTs). An approach to limit the
additional load is to let servers share updates on the status of
their replicas, and cancel any outstanding replica immediately
after the first successful result is returned [9]. As a result, this
approach, referred to as replication with canceling, has the
potential to better meet service-level objectives (SLOs) on both
reliability and RTs. This approach has been recently evaluated
for the case of two servers with independent queues [13], and
for the case of synchronous parallel processors [14]. In this
paper we focus on the case of a CC, where jobs are processed
asynchronously, posing additional modeling challenges as this
requires keeping track of the state of all the servers.

To study the effect of replication with canceling we intro-
duce a stochastic model that estimates the RT distribution. The
ability to determine the RT distribution, instead of simply the
mean [13], [14], allows us to evaluate percentile SLOs, where
the interest lies on the RT faced by the majority, e.g., the
95%, of the requests. As described in Section V, the proposed
model is able to determine the regions of the utilization where
replication with canceling is able to effectively reduce the RT
percentiles. A second advantage of the model is its ability to
capture very general request arrival processes, by relying on
Markovian arrival processes (MAPs). The relevance of this
generality is illustrated in Section VI, where we conduct a
trace-driven case study based on a real workload from an
integrated cluster [15]. The results show that the MAP process
is much better at capturing the arrival patterns observed in
the trace than the traditional Poisson process. Further, the
model illustrates the important effect that the variability and
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Fig. 1: Reference model

correlation of the arrival process have on the offered RT
percentiles. In fact, ignoring such effects may lead to large
SLO violations. We further illustrate the potential of the model
in Section VI, where it forms the basis of an SLO-driven
resource provisioning strategy. The results highlight how provi-
sioning decisions can be improved by explicitly considering the
replication strategy, the RT percentiles and the arrival process
variability. The next section presents the reference model, and
Sections III and IV introduce the stochastic model.

II. BACKGROUND

A. Reference model

We consider a system consisting of a central queue and c
distributed, homogeneous and independent servers. Requests
form a single queue in the order of arrival and join the
next server that becomes available with first-come first-served
(FCFS) scheduling. In a system with replication, one extra
replica is adopted to increase the reliability. As shown in
Figure 1, for each request O submitted to the CC, a single
replica R is adopted and sent right after the original request
to the central queue, and the CC replies with the result from
whichever replica completes first. We denote by request/replica
the original request or its replica, and by job a request and its
replica. To reduce unnecessary workload, servers communicate
updates on the status of their replicas to each other. When
a replica completes execution, it immediately cancels any
outstanding replica of this job.

This model may represent either request or server failures,
where the time-to-failure is exponentially distributed with rate
α, a common assumption in reliability engineering [16], [17].
In the case of a request failure, we assume that the server is not
affected by the failure, and continues serving the next request
in front of the queue. In the case of a server failure, the request
in service is lost, and the failed server is immediately replaced
with a standby server. This can be achieved through active
redundancy, where all redundant servers are in operation at all
times, and in case of a primary server failure, the clustering
software automatically switches all the requests to a standby
server [18]. For warm and hot standby systems, when the
restoration time is too short to impact the system performance,
the switching time can be modeled as zero [5], [18].

In the next sections we propose a model to evaluate the
performance of a CC adopting replication with canceling
approach, and to compare it with the case without replica-
tion. While the request processing times are exponentially
distributed with rate µ, we will show that the job processing
times follow a Phase-type (PH) distribution, whose parameters
depend on the overall system state. Further, motivated by
the high variability observed in CC [15], the model assumes
that requests are submitted according to a Markovian Arrival

Process (MAP). Compared to traditional Poisson arrivals, a
MAP can represent more general inter-arrival times (IATs),
including their high variability and auto-correlation. We now
introduce PH and MAP for later reference.

B. Phase-type distributions

PH distributions have gained popularity thanks to their abil-
ity to capture very general behaviors, while maintaining some
of the analytical tractability of the exponential distribution. A
PH random variable X [19] represents the absorption time
in a Markov Chain (MC) with n + 1 states, where the states
{1, 2, . . . , n} are transient and state 0 is absorbing. We denote
it as PH(τ , T ), where τ is the 1 × n vector of the initial
probability distribution, T is the n × n sub-generator matrix,
and the vector t = −Te holds the absorption rates, with e a
column vector with unit elements. Its cumulative distribution
function (CDF) is F (x) = 1− τexp(Tx)e, for x ≥ 0, and its
expected value is E[X] = −τT−1e.

C. Markovian Arrival Processes

MAPs are widely used to represent arrival streams with
general and correlated IATs [19]. The continuous-time MAP
[19] is a marked MC with generator D = D0 + D1, where
the elements of D0, resp. D1, hold the rates associated to
transitions without, resp. with, arrivals. D1 is a non-negative
matrix, and D0 has non-negative off-diagonal entries and
strictly negative diagonals, with (D0 +D1)e = 0. The arrival
rate is given by λ = γD1e, where γ is the stationary
distribution of the underlying MC, i.e. γD = 0 and γe = 1.
A MAP can model a renewal process with PH(σ, S) IATs by
setting D0 = S and D1 = sσ, where s = −Se.

III. THE QUEUE LENGTH DISTRIBUTION

In this section we focus on the computation of the queue-
length distribution for the reference model introduced above.
While relevant on its own, we will make use of the queue-
length distribution to obtain the job response time distribution
in Section IV. The system without replication can be cast
as a MAP/M/c queue with service rate µ + α and its queue
length distribution can be obtained using the method in [19].
However, for the system with replication, since each job is
composed of two replicas, a more detailed analysis is required.

For the system with replication, we set up a two-
dimensional MC {(L(t), J(t))|t ≥ 0}, where L(t), the level
variable, holds the number of jobs in the system, and J(t) =
(A(t), S(t)), the phase variable, holds both the phase of the
arrival process A(t) and of the service process S(t). The arrival
process is a MAP with ma phases and parameters D0 and
D1. To model the state of the service process S(t) we need
to introduce the following definitions. Let an all-busy period
refer to the time period when all the servers are busy, and a
not-all-busy period to the period when at least one server is
idle [20]. During a not-all-busy period, we define the service
state to be S(t) = (L2(t), L1(t)), where Li(t) is the number
of jobs with i replicas in service. A job has only one replica
in service if the other one already failed. For instance, for
a system with 3 servers and 1 job in process, either one or
both replicas of this job are in service, leading the possible
service phases in level 1 to be {(1, 0), (0, 1)}. On the other



hand, during an all-busy period we define the service state to
be S(t) = (L2(t), Y (t)), where Y (t) represents the state of
the youngest job in service. Y (t) takes values from {2, O,R},
where: 2 means both replicas of the youngest job are in service;
O means only the first replica is in service while the second
one is waiting in front of the queue; and R means one of the
youngest job’s replicas failed while the other one is still in
service. In this case there is no need to record the number of
jobs with one replica in service, since this can be calculated as
c− 2L2(t) when all the servers are busy. In the example with
3 servers, but 3 jobs in the system, the possible service phases
are {(1, O), (1, 2), (1, R), (0, O), (0, R)}, where service phase
(1, O) represents the case where one job has both replicas
in service, the youngest job in service has its first replica in
service and its second replica waiting, and one job is waiting
in the queue. The number of service phases for level k is given
by

ms(k) =

{
k + 1, k ≤ bc/2c,
2k − bc/2c+ 1, bc/2c < k < c.

(1)

From level c onwards, all the levels have the same number
of service phases ms = 2c − bc/2c, where bac is the largest
integer smaller than or equal to a. We order the state-space
lexicographically and define level k as the set of states where
k jobs are present, i.e., the set {(k, j), 0 ≤ j ≤ mk}, where
mk = mams(k), for 0 ≤ k < c, and mk = mams for k ≥ c.

Notice that levels 0 to bc/2c − 1 correspond to not-all-
busy periods, while levels greater and equal to c correspond
to all-busy periods. However, levels bc/2c to c− 1 have both
not-all-busy and all-busy states since a job may have either one
of or both replicas in service. The MC therefore has a Quasi-
Birth-and-Death (QBD) structure [19], with level-dependent
transition rates between levels 0 and c, and level-independent
rates from level c+ 1. As a result, the infinitesimal generator
of the MC can be written as

P =



A
(0)
1 A

(0)
2 0 0 · · · · · · · · · · · · 0

A
(1)
0 A

(1)
1 A

(1)
2 0

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0
. . . . . . 0 A

(c)
0 A

(c)
1 A

(c)
2 0 · · ·

0
. . . . . . . . . 0 A0 A1 A2 · · ·

0
. . . . . . . . . . . . 0 A0 A1 · · ·

...
...

...
...

...
...

...
...

. . .


.

The matrices A(k)
0 , A(k)

1 , and A
(k)
2 hold the transition rates

from level k to levels k − 1, k, and k + 1, respectively. From
level c+ 1 onwards, these matrices do not depend on the level
and are simply labeled A0, A1, and A2. While a successful
service completion of any replica in service leads to a level
decrease, a failure may not necessarily lead to the change of
the level variable. For example, if one job has both replicas
in service, and one of them fails, the number of jobs in the
system is not altered as its other replica remains in service.
We therefore model the evolution of the service phase in level
k as a MAP with parameters (ms(k), C

(k)
0 , C

(k)
1 ), removing

the superindex k for levels greater than or equal to c + 1 as
these transitions become independent of the level. The matrices
C

(k)
0 , resp. C(k)

1 hold the service transition rates without, resp.
with, a change of the level. Letting In denote the n×n identity
matrix, the QBD blocks for levels k ≥ c+ 1 are given by
A0 = C1 ⊗ Ima

, A1 = C0 ⊗ Ima
+ Ims

⊗D0, A2 = Ims
⊗D1,

and similarly for levels 0 ≤ k ≤ c, adding the super-index k.

Let the MC stationary probability vector π be partitioned
as π = [π0,π1, . . . ], where the 1×mk vector πk corresponds
to level k, and its j-th element πk,j holds the probability that k
jobs are in the system, while the phase is j. The QBD structure
implies that πc+i = πcR

i, for i ≥ 1, thus the stationary
distribution for levels k ≥ c + 1 can be obtained from πc
and R. The matrix R is the minimal non-negative solution
to the matrix equation R = A2 + RA1 + R2A0, and can be
obtained with, for instance, the Cyclic Reduction algorithm
[21]. To determine the sub-vector [π0,π1, . . . ,πc] we modify
the transition rates within level c to A(c)

1 +RA0, thus censoring
the transitions beyond this level. The result is a finite level-
dependent QBD, the stationary probability vector of which
can be found with the linear level-reduction algorithm in [19].
Once the sub-vector [π0,π1, . . . ,πc] is obtained, it must be
normalized with the condition

∑c−1
k=0 πke+πc(I−R)−1e = 1.

Notice that the vector π exists if the QBD MC is positive
recurrent, which occurs under the condition

% =
αAA2e

αAA0e
< 1. (2)

Here % is the drift of the MC, and αA is the unique solution
of the system αAA = 0,αAe = 1, with A = A0 +A1 +A2.
This condition will be used as a constraint in the resource-
provisioning strategy introduced later in Section VI.

We now describe how to determine the matrices
(C

(k)
0 , C

(k)
1 ) that govern the evolution of the service process.

1) Levels 0 ≤ k ≤ c: For levels 0 to c, each level has
a different number of service phases, as in Equation (1), and
transitions may lead to a switch between not-all-busy and all-
busy periods states. Service transition rates depend on different
conditions as shown in Table I, where β = µ + α. Three
different conditions are possible: when k2 > c− k, there is at
least one job waiting in the queue; when k2 = c−k, either the
queue is empty or the second replica of the youngest job is in
the queue; and when k2 < c − k, at least one server is idle.
As an example, assume c = 3, then the service MAP matrices
C

(2)
1 and C(2)

0 for level 2 are given by

C
(2)
1 =

(1,0) (0,1) (1,O) 3µ 0
(1,2) β 2µ
(1,R) β 2µ
(0,2) 0 2β

,C
(2)
0 =

(1,O) (1,2) (1,R) (0,2) (1,O) −3β 2α α 0
(1,2) 0 −3β 0 2α
(1,R) 0 0 −3β 2α
(0,2) 0 0 0 −2β

,

respectively. For instance, in service phase (1, O), the success-
ful completion of any replica in service leads to the start of
a not-all-busy period with rate 3µ. Instead, the failure of any
replica of the job with both replicas in service leads to service
phase (1, 2) with rate 2α, continuing with the all-busy period.

2) Levels k ≥ c + 1: For levels greater than or equal to
c+1, the transitions are independent of the level. The transition
rates of matrices C0 and C1 are summarized in Table II. As
an example, consider service phase (k2, 2) (k2 ≥ 1) in level
k, k2 of the k jobs present have both replicas in service. From
this state, either replica of the k2 jobs may complete service
and cancel its partner immediately, leading to service phase
(k2, 2) in level k − 1, with rate 2k2µ.



TABLE I: Transition rates for levels 0 ≤ k ≤ c
Matrix Condition From To Rate

C
(k)
0

k2 > c− k

(k2, 2) (k2 − 1, O) 2k2α
(k2, O) (k2, R) α
(k2, O) (k2, 2) 2k2α
(k2, R) (k2 − 1, O) 2k2α

k2 = c− k

(k2, 2) (k2 − 1, c− 2k2 + 1) 2k2α
(k2, O) (k2, R) α
(k2, O) (k2, 2) 2k2α
(k2, R) (k2 − 1, c− 2k2 + 1) 2k2α

k2 < c− k (k2, k1) (k2 − 1, k1 + 1) 2k2α

C
(k)
1

k2 > c− k

(k2, 2) (k2, 2) 2k2µ
(k2, 2) (k2, O) (c− 2k2)β
(k2, O) (k2, O) (2k2 + 1)µ
(k2, O) (k2 + 1, 2) (c− 2k2 − 1)β
(k2, R) (k2, 2) 2k2µ
(k2, R) (k2, O) (c− 2k2)β

k2 = c− k

(k2, 2) (k2 − 1, c− 2k2) 2k2µ
(k2, 2) (k2, c− 2k2 − 1) (c− 2k2)β
(k2, O) (k2, c− 2k2 − 1) (2k2 + 1)µ
(k2, O) (k2 + 1, 2) (c− 2k2 − 1)β
(k2, R) (k2 − 1, c− 2k2) 2k2µ
(k2, R) (k2, c− 2k2 − 1) (c− 2k2)β

k2 < c− k (k2, k1) (k2 − 1, k1) 2k2µ
(k2, k1) (k2, k1 − 1) k1β

IV. THE RESPONSE TIME DISTRIBUTION

In this section, we obtain the response time (RT) distri-
bution for the reference system with replication. Specifically,
we show that the RT distribution has a PH representation that
is obtained by considering the service time and waiting time
separately. The system without replication, where the service
times follow an exponential distribution, can be modeled as a
MAP/M/c queue, which can be analyzed as in [20] to obtain a
PH representation for the waiting time distribution. However,
the case with replication requires a more detailed analysis due
to the particular dynamics introduced by both replication and
canceling. Further, we make extensive use of the π vector
found in the previous section for the queue-length process.

A. The service time distribution

In the system with replication, the job service time does
not follow an exponential distribution since it is composed of
two replicas, whose execution depend on the system state. The
service time however has a PH representation with parameters
{αservice, Sservice}. Let Y (t) be the service state of a tagged
job at time t, which takes values from {2, O,R}, as defined in
Section III. We add two absorbing states S and F to represent
the cases where the job completes service successfully or
encounters a failure, respectively. Further, the holding times in
each state are exponentially distributed, and we can describe
the transition among the states as an MC with generator
Sservice = S̃service ⊗ Ima

, where S̃service is given by

[S̃service|tS |tF ] =

(2) (O) (R) (S) (F)


(2) −2β 0 2α
... 2µ

... 0

(O) (c− 1)β −cβ α
... µ

... 0

(R) 0 0 −β
... µ

... α

.

We have labeled tS and tF the absorption vector to states S
and F , respectively, while Sservice is precisely the sub-generator
matrix we need for the PH representation of the service time
distribution. Notice that a job can only start service in phase 2
or O, since in R one of the replicas has already failed. Further,
for phases 2 and R we only need to consider the state of the
tagged job’s replicas in process. Instead, in phase O, which
only occurs when all the servers are busy, the first replica of
the tagged job is in service while its second replica is waiting

TABLE II: Transition rates for levels k ≥ c+ 1
Matrix From To Rate

C0

(k2, 2) (k2 − 1, O) 2k2α
(k2, O) (k2, 2) 2k2α
(k2, O) (k2, R) α
(k2, R) (k2 − 1, O) 2k2α

C1

(k2, 2) (k2, 2) 2k2µ
(k2, 2) (k2, O) (c− 2k2)β
(k2, O) (k2, O) (2k2 + 1)µ
(k2, O) (k2 + 1, 2) (c− 2k2 − 1)β
(k2, R) (k2, 2) 2k2µ
(k2, R) (k2, O) (c− 2k2)β

TABLE III: Transition rates of QS(k), k ≥ bc/2c+ 1
Condition Current state Initial states Transition rates

k2 > c− k

(k2, 2) 2 2k2µ
(k2, 2) O (c− 2k2)β + 2k2α
(k2, O) O (2k2 + 1)µ
(k2, R) 2 2k2µ
(k2, R) O (c− 2k2)β + 2k2α

in front of the queue. Thus, if any of the other c− 1 requests
in service completes service or fails, the second replica of the
tagged job starts service. This occurs with rate (c − 1)β and
leads the tagged job to service phase 2.

Having obtained Sservice, it remains to determine the initial
probability vector αservice, which is the stationary probability
that a job starts service in each of the phases {2, O,R}. In
other words, αservice is the distribution of the service phase of
the youngest job in service, immediately after the initiation
of a job service. This can be obtained from the queue-length
process defined in Section III by multiplying the stationary
distribution π by a matrix that holds the rates at which a new
job starts service in each state, and the phase in which the
service starts. We can therefore obtain αservice as

bc/2c∑
k=0

πkQA(k) +
c−1∑

k=bc/2c+1

πk(QA(k) +QS(k)) +
∞∑
k=c

πkQS(k)(
bc/2c∑
k=0

πkQA(k) +
c−1∑

k=bc/2c+1

πk(QA(k) +QS(k)) +
∞∑
k=c

πkQS(k)

)
e

,

where the denominator is simply the sum of the numerator
entries. The matrices QA(k) and QS(k) hold the rates at
which a new job starts service due to an arrival or to a service
completion in level k, respectively, as described next.

The matrices QA(k) depend on the level k and are defined
up to level c − 1, as beyond this level an arrival does not
trigger a job service start. These matrices can be written as
QA(k) = Q̃A(k)⊗D1, where the (i, j)-th entry of Q̃A(k) is
equal to 1 if the arrival of a job to a system with k jobs and
service phase i causes the start of a new job in service state j;
otherwise it is equal to 0. For example, in the case with c = 3
servers and k = 2 jobs present we have

Q̃A(2) =

(2) (O) (R) (1,O) 0 0 0
(1,2) 0 0 0
(0,2) 0 1 0
(1,R) 0 0 0

.

In service phase (0, 2) one server is idle, enabling the start of
a new job in phase O in case of an arrival. In the other phases,
an arrival does not have this effect as all servers are busy.

The matrices QS(k) are only relevant for states where all
the servers are busy and at least one job is waiting in the
queue, i.e., for states in levels k ≥ bc/2c + 1 satisfying the



TABLE IV: Transition rates of Q and Π
matrix From To Rate

Q
(k2, O) (k2, R) α
(k2, O) (k2 + 1, 2) (c− 2k2 − 1)β
(k2, O) (k2, 2) 2k2α

Π

(k2, O) (k2, O) (2k2 + 1)µ
(k2, 2) (k2, 2) 2k2µ
(k2, 2) (k2 − 1, O) 2k2α
(k2, 2) (k2, O) (c− 2k2)β
(k2, R) (k2, 2) 2k2µ
(k2, R) (k2, O) (c− 2k2)β
(k2, R) (k2 − 1, O) 2k2α

condition k2 > c−k. Only in this case a service completion or
failure may trigger the first job in the queue to start service.
Further, for levels c + 1 or greater we remove the index k
as these matrices no longer depend on the level k. We let
QS(k) = Q̃S(k) ⊗ Ima , where the (i, j)-th entry of Q̃S(k)
holds the service and failure rate in service phase i, for 1 ≤
i ≤ ms(k), that triggers the start of a job in service phase j.
The transition rates of QS(k) are shown in Table III. As an
example, for c = 3 and level k = 3, the matrix QS(3) is

QS(3) =

(2) (O) (R)


(1,O) 0 3µ 0
(1,2) 2µ 2α+ β 0
(0,O) 0 0 0
(1,R) 2µ 2α+ β 0
(0,R) 0 0 0

.

In service phase (1, 2), one job in service has one replica left,
another, the youngest in service, has both replicas executing,
and a third remains in queue. Thus, the completion of either
replica of the youngest job causes the job in the queue to
start service in state 2, as both replicas start at the same time.
Instead, the completion or failure of the job with a single
replica left, lets the job in queue to start service with its one
replica only, thus starting in service state O.

B. The waiting time distribution

To determine the waiting time distribution, we observe the
queue only during the all-busy periods [20], and define a bi-
variate Markov process {X(t), J(t)|t ≥ 0} [22]. Here the age
process X(t) is the total time-in-system of the youngest job
in service, and the phase process J(t) = (A(t), L2(t), Y (t))
holds the state of the arrival and service processes, as in
the queue-length process defined in Section III. The phase
process J(t) thus takes m = mams different values. The age
process {X(t)|t ≥ 0} is right-continuous and takes values in
[0,∞). X(t) may either increase linearly with rate 1, if no
job service completions occur, or may have downward jumps.
A downward jump occurs when a service completion triggers
the start of a new job service, and the value of the age process
after the jump is equal to the waiting time of the job starting
service. Different from the standard case treated in [20], where
the service completion of any job in service triggers the start
of a new job service, we need to keep track of the service
state of the youngest job in service Y (t) as part of the phase
process. This is necessary because, with the introduction of
replication and canceling, a service completion or failure does
not necessarily triggers the start of a new job service, as a
replica of the youngest job may be the next to start service.
For instance, if Y (t) = O, a service completion or failure
leads the second replica of the youngest job to start service,
without a new job stating service.

To determine the PH representation (αwait, Swait) of the
waiting time distribution, we rely on the stationary distribution
ρ(x) of the (X(t), J(t)) process, which has a matrix exponen-
tial representation [22] ρ(x) = ρ(0)exp{Tx}, for x > 0. The
m×m matrix T satisfies the non-linear integral equation

T = Q⊗ Ima +

∞∫
0

exp{Tt}ΠMAP (t)dt,

where ΠMAP (t) = Π⊗ exp{D0t}D1. Q and Π are ms ×ms

matrices that hold the transition rates of the service process
associated to transitions without and with the start of a new
job service, respectively [20], [22]. Q + Π is the generator
of the marginal service phase process, the transition rates of
which are shown in Table IV. Letting

L =

∞∫
0

exp{Tt}(Ims
⊗ exp{D0t})dt,

we have T = Q⊗ Ima
+LΠ⊗D1. Integrating L by parts we

obtain
TL+ L(Ims

⊗D0) = −I, (3)
which can be used to compute T iteratively as in [22]. Notice
that (3) is a Sylvester matrix equation that can be solved in
O(m3) time with the Hessenberg-Schur algorithm [23].

The vector ρ(0) can be obtained by observing that its
i-th element equals the probability that the phase J(t) is i
immediately after an arrival that finds c − 2 or c − 1 busy
servers, thus starting an all-busy period. We thus define the
1 × mk vectors uk that hold the number of busy servers in
each state of level k. Further, let the i-th entry of the 1×mk

vector vk be [vk]i = 1{uk,i = c−1|c−2}, where the indicator
function 1{x} equals 1 if x is true and 0 otherwise. Therefore,
ρ(0) can be computed as

ρ(0) =

(
c−1∑
k=0

(πk ◦ vk)(Kk ⊗ Ima
)

)
(Ims

⊗D1)(
c−1∑
k=0

(πk ◦ vk)(Kk ⊗ Ima
)

)
(Ims

⊗D1)e

,

where ◦ stands for the Hadamard product [24], and the
ms(k)×ms matrix Kk holds the first ms(k) rows of Ims

.

Notice that the vector αwait can be interpreted as the
stationary distribution of the phase process immediately after
a downward jump of the age process. Let σ be the steady-
state marginal distribution of the phase process J(t), and ϕ
the probability that when the current state is (t + dt, i), the
next return to a state with age in the interval [t, t + dt] is by
way of a downward jump. αwait can thus be obtained as

αwait = υσ ◦ϕ/((σ ◦ϕ)e).

Here the denominator serves to normalize the distribution,
while υ is the probability that a job must wait. As υ is the
probability that all servers are busy at a job’s arrival instant,
we can rely on the queue-length process to obtain it as

υ = 1−
∑c−1
k=0(πk ◦wk)(Ims(k) ⊗D1)ems(k)∑∞

k=0(πk(Ims(k) ⊗D1)ems(k))
,

where the entries of wk are given by [wk]i = 1{uk,i ≤ c−1},
identifying the states with at least one idle server.



Following [22], we can obtain σ as

σ =

∫ ∞
0

ρ(t)dt = ρ(0)

∫ ∞
0

exp{Tx}dt = −ρ(0)T−1,

while the vector ϕ is given by [20]

ϕ =

∫ ∞
0

exp{Tt}ΠMAP(t)dte = (T −Q)e.

This determines αwait, and the Swait matrix is given by [20]
Swait = ∆−1T ′∆,

where ∆ = diag(αwait).

C. The response time distribution

Given the PH representations of both waiting and service
times, the PH representation (αres, Sres) of the RT distribution
is given by

αres = [αwait (1−αwaite)αservice],

Sres =

[
Swait (−Swaite)αservice
0 Sservice

]
.

From this, we readily have the RT PDF, CDF, and moments.
The average number of busy servers U can be computed as

U =

(
c−1∑
k=1

kπk ◦ uk + c

(
1−

c−1∑
k=1

πke

))
/c.

V. EXPERIMENTAL ASSESSMENT

In this section, we make use of the proposed model to
compare systems with and without replication in terms of
their reliability and offered RTs. To illustrate the impact of the
arrival processes, we consider renewal processes with exponen-
tial (Exp) and 2-phase hyper-exponential (HE2) inter-arrival
times (IATs), as well as 2-phase MAPs (MAP). We thus cover
a broad range of behaviors in terms of variability, measured
by the squared coefficient of variation (SCV), defined for a
random variable X as C2

X = Var[X]/E[X]2. While for Exp
arrivals the SCV is one, for the HE2 and MAP cases we set
the SCV to 10. For MAP arrivals we also set the decay rate
of the auto-correlation function to 0.9. We use the methods in
[25], [26] to obtain the HE2 and MAP representations. The
service rate µ is set to 1, and the arrival and failure rates are
in proportion to µ. In the figures, the legends N and R refer
to systems without and with replication, respectively.

A. Reliability

The reliability, measured as the probability that a job
completes service successfully, only depends on the service
and failure rates, being given by µ/(µ+α) and 1−(α/(µ+α))2

for the systems without and with replication, respectively.
Figure 2 compares the system reliability under failure rates
between 0.1 and 0.5, showing a significant improvement in
reliability when introducing replication. For instance, even
under a large failure rate of 0.5, the reliability improves from
66.67% to 88.89% thanks to the added replica, confirming the
effectiveness of replication to improve reliability.

B. The effect of canceling

To evaluate the effectiveness of canceling, we compare
the RTs obtained with the replication approach with canceling
against those observed without canceling. The results without
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Fig. 3: The effect of canceling

canceling are obtained with a simulation model, as this is
not the focus of the model introduced in this paper. We
consider an instance with HE2 arrivals, 40 servers, failure rate
α = 0.1, and two different utilization levels for the system
without replication: 0.20 and 0.45. Figure 3 depicts the RT
complementary CDF (CCDF) of the system with canceling,
labeled C, and without canceling, labeled NC. We observe
that in the low-utilization case (0.2), the RT CCDFs of both
replication approaches are very similar as the waiting time is
negligible in both cases. In this case, the 0.2 utilization without
replication, becomes 0.22 and 0.40 when introducing replica-
tion with and without canceling, respectively. However, when
the utilization without replication is 0.45, the introduction of
replication without canceling doubles the utilization to 0.90,
leading to large long-tailed RTs. Instead, the utilization in the
case with canceling only increases to 0.49, while the RT CCDF
remains very close to the one under 0.2 utilization. This is
caused by the high reliability (0.9), which enables the selection
of the first replica that completes service. Clearly, replication
with canceling is very effective in limiting the additional load
introduced by the replicas, allowing it to provide better RTs,
in addition to the expected gains in reliability.

C. Performance of replication with canceling

Another benefit of replication with canceling is its ability
to exploit the concurrent execution of the replicas to select
the first available result. We have observed that this effect can
effectively reduce the RTs, as long as the utilization of the
system without replication stays below a certain threshold. To
study this behavior, we focus on the RT p-th percentile RTp,
which is the maximum RT faced by p% of the successful
jobs. Figure 4 depicts RT95 as a function of the utilization
in the no-replica case, under HE2 arrivals, 40 servers, and
failure rates 0.1 and 0.3. Focusing on the case with failure rate
0.1, we observe how RT95 is 40% smaller under replication,
when the utilization is up to 40%. For larger utilization levels,
the difference reduces and becomes zero at a crossing point
at 0.78 utilization. Thus, below this value, the introduction
of replication with canceling effectively reduces the RTs.
Figure 4 also captures the effect of the failure rate on the
RT distribution. Without replication, the system with higher
failure rate shows a shorter RT95, as with a lower reliability,
only short jobs can complete service before a failure. However,
the introduction of replication makes the RT95 under failure
rate 0.1 to be shorter than under failure rate 0.3. This is caused
by the ability of the replication strategy to obtain the result
of the first replica to finish, but this effect weakens with a
higher failure rate, as this reduces the probability that both
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replicas are running until the first one completes. Further, the
crossing point diminishes under the higher failure rate, limiting
the conditions under which replication reduces the RTs.

Figure 5 compares the RT95 under Exp and MAP arrivals,
keeping the same mean arrival rate. First, we observe how
the bursty workload modeled by the MAP arrivals has a large
effect on the RTs, although this effect only takes shape after
a certain utilization threshold, in this case between 40% and
50%. Second, the system under MAP arrivals has a smaller
crossing point than under Exp arrivals, and we observe how
under MAP arrivals and replication, the RTs start to grow
earlier than without replication. Recall that MAP arrivals show
high variability and positive auto-correlation, with the high
variability leading to a higher probability of having small
IATs, and the auto-correlation leading to a high probability that
short IATs come in bursts. Considering these characteristics
is therefore key when deciding whether to replicate or not,
as under MAP arrivals the room for replication is limited to
scenarios with lower utilizations.

Figure 6 compares the RT95 under 10 and 40 servers, with
HE2 arrivals. The crossing point of the 10-server system is
smaller than that of the 40-servers case, as more servers pro-
vide more flexibility to handle the additional load introduced
with the replicas. We also observe how the RT95 is the same
for the 10 and 40 server cases up to a certain utilization level,
after which they start to diverge. This is because under low
utilizations, RTs mostly correspond to service times, and as the
utilization increases, queueing times become more important.
We conclude this section with Figure 7, which shows the
crossing points for Exp, HE2, and MAP arrivals, with the
number of servers between 5 to 50. This figure summarizes
how the variability and auto-correlation of the arrival process
affect the decisions on whether to replicate or not, and how
additional servers provide more flexibility to deal with the load
introduced by the replication scheme.

VI. SLO-DRIVEN RESOURCE PROVISIONING

A key challenge in CC management is to adequately
provision resources to meet SLOs on reliability, latency and
throughput [27]. In this section, we present a model-based
resource provisioning strategy, aimed at finding the minimum
number of servers needed to meet an RT percentile SLO,
and explore the maximum throughput achievable with a given
configuration. We set the service rate µ and failure rate α to
be 1.0 and 0.1, respectively, and consider the Exp, HE2, and
MAP arrival processes, as defined in Section V.
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A. Resource provisioning

Under the precondition of meeting a reliability SLO, we
aim at determining the minimum number of servers c needed
to satisfy an RT SLO defined as RTmax. Using the RT 95-th,
this problem can be formulated as:

c∗ = Min. c,

s.t. c ∈ {1, 2, · · · , cmax},
P (RT (c) < RTmax) = 0.95,

%(c) < 1,

where cmax is the maximum number of servers available.
RT (c) is the RT obtained with c servers, and the constraint
on %(c), defined in Equation (2), ensures stability. Both RT (c)
and %(c) are derived from the model introduced in Sections III
and IV, and the optimization problem is solved with a binary
search algorithm [28].

Figure 8 shows the minimum number of servers needed for
systems with and without replication, given cmax = 100, for
different RTmax objectives: [1.5, 1.6, · · · , 3.5]. The missing
results correspond to cases where the required RTmax cannot
be achieved with the 100 servers available. The results show
that tight RTmax objectives can only be achieved with replica-
tion. For instance, the system with replication can achieve an
RTmax as low as 1.70, while the system without replication
cannot achieve an RTmax below 2.80. Furthermore, the system
with replication requires less servers than the system without
replication to achieve tighter RTmax objectives. However, a
looser RTmax, e.g., 3.3, under MAP arrivals, can be achieved
with less servers without replication. It is worth noting that, for
the same RTmax objective, the system under non-exponential
arrivals requires many more servers to cope with the variability
and correlation in the workload.

Relying on this model-based resource provisioning strat-
egy, one can decide whether or not to replicate by considering
both reliability and RT SLOs. For instance, the systems without
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TABLE V: KS test
IAT p-value KS
Exp 8.05E−30 0.8235
HE2 0.4134 0.1253
HE3 0.4506 0.1217
HE4 0.4531 0.1215
HE5 0.4532 0.1215
HE6 0.4532 0.1215 100 101 102 103 104
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and with replication considered in this section have a reliability
of 90.91% and 99.17%, respectively. If the reliability SLO is
95%, then replication should always be adopted. Instead, if
this SLO is only 90% and the workload is modeled as a MAP,
replication should be adopted if the RT SLO is up to 3.1.
Otherwise, no replication should be adopted.

B. Maximum achievable throughput

The system throughput is the average number of requests
served per time unit, and mainly depends on the resources
available. However, we want to explore how the throughput
is affected by the introduction of replication with canceling.
To do so, we setup the following optimization program,
where we find the maximum throughput achievable (λ∗) while
maintaining stability and complying with the RT SLO. The
problem can be formulated as:

λ∗ = Max. λ,

s.t. P (RT (λ) < RTmax) = 0.95,

%(λ) < 1.

Figure 9(a) shows λ∗ for a system with HE2 arrivals, 25 servers
and RTmax between 2.5 and 3.5. Clearly, the system with
replication can achieve a much higher throughout under tight
RTmax, in this case below 3.2. However, under looser RTmax
objectives, the system without replication performs better. This
trend can also be observed in Figure 9(b), where we consider
only two values for RTmax, 2.8 and 3.4. Here we also observe
that the difference in λ∗, between the systems with and without
replication, amplifies as the number of servers increases.

C. Case Study: RICC Log

We now evaluate the proposed fault-tolerance approach
and the model-based resource provisioning strategy on realistic
traffic patterns. To this end, we make use of the RICC (RIKEN
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Integrated Cluster of Clusters) log, available on the Parallel
Workloads Archive [15]. This log contains a total of 447,794
records of jobs submitted to the RICC installation in Japan
from May to September 2010. We parameterize our model
with jobs comprised of a single task, estimating a request
service rate µ of 0.3245 per hour and a failure probability
of 3.63%, based on which we estimate a failure rate α of
0.0122 per hour. As job arrivals show a strong daily and
hourly cycle, we divide the arrival data into sets according
to the day of the week and the hour of the day. Focusing on
single-task jobs, we find that the IATs statistical characteristics
vary significantly with time and day, with the highest SCV
being 14.06 on Sunday between 12:00 and 13:00, and the
lowest being 1.88 on Tuesday from 11:00 to 12:00. In the
following we use the arrival data with the highest SCV as an
example. Given the high variability, we use the method in [29],
as implemented in jPhase [30], to find a hyper-exponential
distribution with r phases (HEr). We test the goodness-of-fit
of the fitted CDFs with the Kolmogorov-Smirnov test [31].
Table V shows the p-value and maximum absolute difference
between the CDFs (KS) for Exp and various HEr distributions.
Clearly, the Exp assumption fails the KS test, while any of the
HEr passes it under typical significance levels. Further, the p-
value increases and the KS statistic decreases as the number
of phases increases, although the improvement is limited for 5
or more phases. We thus choose the HE4 representation, and
compare the CCDF of the real trace, and the fitted Exp and
HE4 in Figure 10. Here we observe how the HE4 distribution
captures the characteristics of the trace much better than the
Exp, especially its long tail along a wide range of values.

To illustrate the impact of the arrival process variability on
the system performance, we compute the minimum number
of servers needed with Exp and HE4 arrivals, given different
RT95 objectives and a maximum of 100 servers, as in Sec-
tion VI-A. Figure 11(a) shows how, in contrast with the results
in Section V, the case with replication always requires less
servers than the case without replication. This is caused by the
higher reliability observed here, which increases the likelihood
of a replica completing service before the failure of either,
enabling the selection of the first available result. In addition,
the system with HE4 arrivals requires many more servers than
with Exp arrivals to achieve the RT SLO, either with or without
replication. If the Exp assumption was used to size the cluster,
we may expect it to have poor performance. Figure 11(b)
depicts the RT CCDFs obtained under HE4 arrivals and Exp
arrivals, when the cluster is provisioned assuming Exp arrivals,
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and setting RTmax to 6 hours. Clearly, the number of servers
computed assuming Exp IATs is far from sufficient under HE4

arrivals, with the RT95 under HE4 arrivals being 395 hours,
which is two orders of magnitude larger than the RTmax. This
highlights the importance of considering the IAT variability
observed in the real data-trace when dimensioning the cluster.

To further emphasize the importance of the SCV in pro-
visioning CC resources, we look at the RICC historical data
on Tuesdays from 14:00 to 22:00, fitting both HEr and Exp
arrivals for each hour. While Figure 12(a) depicts the observed
rate and SCV, Figure 12(b) shows the required number of
servers to achieve an RTmax of 10 hours. The effect of the
arrival rate appears dominant as the trend of the number of
servers is similar to the trend of the arrival rate for both IAT
distributions. However, we also observe non-trivial interactions
between the arrival rate and the SCV. For instance, from hour
20 to hour 21 the arrival rate decreases by 41% but the number
of servers under HEr arrivals decreases only by around 16%
while this number decreases by 40% under Exp arrivals. This
is caused by the large increase in SCV, as it almost doubles.
Another example is at hours 14 and 16, which have very
different arrival rates and SCVs, but require the same number
of servers, assuming HEr arrivals, to achieve the RT SLO.

VII. CONCLUSION

In this paper, we evaluate the potential benefits of concur-
rent replication with canceling, considering its effect on both
reliability and RTs. This is done with an analytic model that
handles general arrival processes, and obtains the distribution
of the response times instead of just its mean. The model en-
ables us to determine when replication should be implemented,
considering the job failure rate, the number of CC servers, the
utilization of the system without replication, and the variability
and auto-correlation of the arrival process. The model also
serves as a basis for an SLO-aware resource provisioning
strategy, which determines the minimum number of CC servers
necessary to achieve a certain RT SLO. This strategy can be
generalized to consider the costs of running the CC servers,
or renting them in case of a cloud-based deployment. Further,
based on measured and forecast arrival patterns, the model can
serve as the basis of an online system that determines whether
to adopt replication and adapts the CC size considering SLOs.
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