
A fast Newton’s iteration for M/G/1-type and GI/M/1-type

Markov chains

Juan F. Pérez∗, Miklós Telek†and Benny Van Houdt‡

Abstract

In this paper we revisit Newton’s iteration as a method to find the G or R matrix in M/G/1-

type and GI/M/1-type Markov chains. We start by reconsidering the method proposed in [15]

which required O(m6 +Nm4) time per iteration, and show that it can be reduced to O(Nm4),

where m is the block size and N the number of blocks. Moreover, we show how this method

is able to further reduce this time complexity to O(Nr3 + Nm2r2 + m3r) when A0 has rank

r < m. In addition, we consider the case where [A1A2 . . . AN] is of rank r < m and propose a

new Newton’s iteration method which is proven to converge quadratically and that has a time

complexity of O(Nm3 +Nm2r2 +mr3) per iteration. The computational gains in all the cases

are illustrated through numerical examples.

1 Introduction

Discrete-time M/G/1-type and GI/M/1-type Markov chains (MCs) are generalizations of the well-

known Quasi-Birth-Death Markov chains and have been studied and used extensively by various

authors [17, 13, 2]. An M/G/1-type MC is defined by a transition probability matrix of the form

P =



B0 B1 B2 B3 . . .

C A1 A2 A3 . . .

A0 A1 A2
. . .

A0 A1
. . .

0
. . .

. . .


, (1)

∗Department of Electrical and Electronics Engineering, Universidad de los Andes, Bogotá, Colombia. Email:

jf.perez33@uniandes.edu.co
†Department of Telecommunications, Budapest University of Technology and Economics, Budapest, Hungary.

Email: telek@hit.bme.hu
‡Performance Analysis of Telecommunication Systems Research Group, Department of Mathematics and Com-

puter Science, University of Antwerp - IBBT, Antwerp, Belgium. Email: benny.vanhoudt@ua.ac.be

1

while the transition probability matrix of a GI/M/1-type MC can be expressed as

P =



B0 C 0

B1 A1 A0

B2 A2 A1 A0

B3 A3 A2 A1
. . .

...
...

. . .
. . .

. . .


, (2)

where B0 and A1 are square matrices of size m0 and m, respectively. Denote N as the smallest

index i such that Ai, for i > N , is (numerically) zero. The key step in determining the steady

state probability vector of an M/G/1-type MC, if it exists, is computing the matrix G that is the

smallest non-negative solution to the matrix equation [17]

G =
N∑
i=0

AiG
i. (3)

Similarly, for the GI/M/1-type the matrix R is the smallest non-negative solution to the matrix

equation [16]

R =

N∑
i=0

RiAi. (4)

Furthermore, any M/G/1-type MC can be transformed into a GI/M/1-type MC and vice versa by

means of either the Ramaswami [23] or Bright [24] dual, and the G (R) matrix can be expressed

directly in terms of the R (G) matrix of the dual chain. For instance, in the SMCSolver tool [5],

the R matrix of a GI/M/1-type MC is computed via the G matrix of its dual.

Various algorithms have been developed to compute G iteratively. These include functional

iterations (FI) [17], point-wise cyclic reduction (CR) [3], the invariant subspace (IS) approach [1],

the Ramaswami reduction (RR) [4] and the Newton iteration (NI) [15, 22, 12]. The FI algorithm

requires only O(Nm3) time per iteration, but converges only linearly, meaning thousands of itera-

tions might be required. The other algorithms have at least quadratic convergence (meaning about

15 iterations suffice in most cases), where the CR algorithm typically performs best, although CR

does require substantially more memory than FI (the exact amount depends on the number of roots

required by the point-wise evaluation). The IS algorithm performs well for very small N values,

but is often numerically unstable for N values of 10 or above, while the RR may outperform the CR

algorithm on occasion, but typically requires substantially more time (and memory). Finally, the

NI as introduced in [15] and [12] requires O(m6 +Nm4) time per iteration, making it impractical

even for small values of m and N , as most of the algorithms have a cubic time complexity in m.

To mitigate the high computation time per iteration, a sub-Newton iteration was defined in [22],

at the cost of many more iterations.

The computational complexity of the algorithms listed above can sometimes be further reduced

by exploiting the internal structure of the matrices A0 to AN . A particularly useful example is

the class of M/G/1-type MCs for which the matrix A0 has only r non-zero columns, a property

2

referred to as restricted downward transitions. In this case the matrix G contains (at most) r

non-zero columns as well [17]. Restricted downward transitions were studied in [9] for the linearly

convergent FI algorithms only and in the special case of N = 2. An algorithm with quadratic

convergence that makes use of the CR algorithm for N ≥ 2 was introduced in [21]. The operation

and computational complexity of this algorithm, termed the RT-CR algorithm, is briefly discussed

in Appendix C as it is compared in Section 6 with the Newton iteration. In this paper we consider

both general M/G/1-type MCs as well as those with restricted downward transitions. In fact, we

consider the more general low-rank downward transitions that only demand that the matrix A0

has rank r < m, as opposed to having only r non-zero columns. In fact, in some cases the low-rank

downward transitions can be reduced to restricted downward transitions as explained in [19] (at the

expense of a slight increase in m) . Additionally, we also consider M/G/1-type MCs with low-rank

local and upward transitions, which means that [A1A2 . . . AN] is of rank r < m.

In this paper the following contributions are made regarding the computation of G (and R):

1. In Section 2 we revisit the Newton iteration as defined in [15] and indicate that the time

complexity per iteration can be reduced from O(m6 + Nm4) to O(Nm4) using a Schur-

decomposition method recently introduced in [20, 21].

2. When the matrix A0 is of rank r, meaning it can be decomposed as A0 = Â0Γ with Â0 an

m × r and Γ an r ×m matrix, the time complexity per iteration can be further reduced to

O(Nr3 + Nm2r2 + m3r), as indicated in Section 3. An M/G/1-type MC for which A0 has

this property is termed an M/G/1-type MC with low-rank downward transitions.

3. We introduce a new Newton iteration (in Section 4) based on the U matrix [13], and prove

that it converges quadratically to the matrix U , from which G (or R) can be computed

directly, e.g, G = (I − U)−1A0 [13].

4. When the matrices Ai for the M/G/1-type MC can be decomposed as ΓÂi, for i > 0, where

Γ an m × r and Âi is an r × m matrix, we refer to the MC as having low-rank local and

upward transitions. Note, this is equivalent to stating that the matrix [A1A2 . . . AN] has rank

r. Similarly, for GI/M/1-type MCs we state that they have low-rank local and downward

transitions if Ai can be decomposed as ÂiΓ, for i > 0, where Âi is an m× r and Γ an r ×m
matrix. Using the novel Newton iteration we show in Section 5 that the time per iteration to

compute G (or R) can be reduced from O(Nm4) to O(Nm3 +Nm2r2 +mr3) in case of local

upward (or downward) low-rank transitions.

5. We have integrated these new solution methods into the SMCSolver tool and used it to

exemplify the substantial gains that the above algorithms offer to the existing methods (see

Section 6), especially for limited m values and large N values. Further, the novel methods

require only as much memory as the FI algorithm (that is, O(Nm2)).

In the paper we will limit ourselves to M/G/1-type MCs (except for Section 6) as the results for

the GI/M/1-type follow immediately by duality [23].

3

2 Accelerating Newton’s iteration to compute G

In this section we revisit Newton’s iteration as introduced in [15], in order to show how the time

per iteration can be reduced significantly. As mentioned in the introduction, the matrix G is the

minimal nonnegative solution of X =
∑N

v=0AvX
v. Denote by 〈X,Y 〉 the set of matrices Z such

that X ≤ Z ≤ Y , where we use the natural partial order, i.e., X ≤ Y if Xij ≤ Yij for all i, j. We

can restate the problem of computing G as that of finding the matrix X such that GX = 0, where

the operator G is defined as GX =
∑N

v=0AvX
v −X, for every matrix X in 〈0, G〉.

The Gateaux derivative [18] of this operator is given by

G′(X)H =

N∑
v=1

v−1∑
j=0

AvX
jHXv−1−j −H.

Using this operator we can define a Newton’s iteration that starts with G0 = 0, and iteratively

computes Gk+1 = Gk−G′(Gk)−1G(Gk), for k ≥ 0. It has been shown in [15] that G is order-convex

and G′ is isotone on 〈0, G〉, and it is easy to see that G(0) ≥ 0 and G(G) = 0. Define the quantity

ρ, referred to as the drift of the chain, as

ρ = πβ, (5)

where π is the stationary probability vector of the irreducible stochastic matrix A =
∑N

i=0Ai, β is

given by β =
∑N

i=1 iAie, and e is a column vector of ones. The drift is equal to one when the MC

is null recurrent, while ρ < 1 and ρ > 1 correspond to the positive recurrent and transient cases,

respectively [13]. It was also shown in [15] that, if ρ 6= 1, the inverse G′(X)−1 exists and is a non-

positive matrix for every X ∈ 〈0, G〉. Moreover, from [12] we know that G′ is Lipschitz-continuous.

Based on these results we can restate (a slightly stronger version of) Theorem 9 in [15], which is a

direct application of the Monotone Newton Theorem in [18, 13.3.4].

Theorem 1 (Theorem 9 in [15]). Let G0 = 0, and let the Newton iterates Gk+1 be given by

Gk+1 = Gk − G′(Gk)−1GGk, for k ≥ 0. Then, if ρ 6= 1, the iterates satisfy limk→∞Gk = G, and

Gk+1 ≥ Gk, where G is the minimal nonnegative solution of Eq. (3). Furthermore, the convergence

toward G is quadratic, i.e., there is a positive constant c such that

||Gk+1 −G|| ≤ c||Gk −G||2.

The Newton’s iterates Gk can be restated as Gk+1 = Gk + Xk, where Xk is the solution to

G′(Gk)Xk = −GGk, for k ≥ 1. Thus, Xk is the solution to

Xk −
N∑
v=1

v−1∑
j=0

AvG
j
kXkG

v−1−j
k =

N∑
v=0

AvG
v
k −Gk,

which, after rearranging the terms and interchanging the sums can be rewritten as

Xk −
N−1∑
j=0

N∑
v=j+1

AvG
v−1−j
k XkG

j
k =

N∑
v=0

AvG
v
k −Gk. (6)

4

If we define Sk,i =
∑N

j=iAjG
j−i
k , the previous equation is equivalent to

(Sk,1 − I)Xk +
N−1∑
j=1

Sk,j+1XkG
j
k = Gk − Sk,0, (7)

which clearly is a linear equation of the form
∑N−1

j=0 BjXC
j = E, where all the matrices involved

are of size m. By applying general methods, we would need O(m6) to solve this system since it is a

linear system with m2 unknowns and equations. However, as explained in [20, 21], a linear system

of this form can be solved faster by applying a Schur decomposition on the matrix C, which in our

case is the m ×m matrix Gk, and then solving m linear systems with m unknows and equations.

For completeness, we have included a description of this solution method in Appendix B. We would

like to stress that the equation of the form
∑N−1

j=0 BjXC
j = E, which appeared in [20, 21], was used

for a very different purpose (see Appendix C for details) and the matrices Bj , for j = 0, . . . , N − 1,

and E were not square either. Further, the Newton iteration solves such a linear system during

each iteration, while the algorithm in [21] is also in part iterative, but the linear system appears

only after the iterative part has ended.

To summarize, to compute the matrixXk for the iterateGk+1, we need to determine the matrices

that premultiply Xk in Eq. (7), at a cost of O(Nm3) time, perform the Schur decomposition of Gk,

requiring O(m3) time, and compute N powers of the upper quasi-triangular matrix obtained from

the decomposition (see Appendix B), at a cost of O(Nm3) time. Afterward, to find all the columns

of Xk, apart from solving m linear systems at a cost of O(m3) each, we also need to build the

matrices that define these linear systems, which requires O(Nm4) time in total. As a result, the

total cost of this method is O(Nm4), showing a significant reduction in computation time compared

to the general approach, and turning this method into a feasible alternative for moderate block size

m. We will illustrate this in Section 6 with some numerical examples. Also, the space complexity

of this method is O(Nm2) only. In the next section we will show that this method has another

advantage over other quadratically-convergent methods: if the matrix A0 has low rank, a case that

we refer to as low-rank downward transitions, the Newton’s method can be adapted to reduce its

computational cost per iteration.

3 The case of low-rank downward transitions

We now assume that the matrix A0 has rank r < m, such that it can be written as A0 = Â0Γ,

with Â0 and Γ of size m × r and r × m, respectively. If we apply the Newton method to this

case, we find that all the matrices Xk can be written as X̂kΓ. This is obviously true for k = 0,

and assume that it is true for j = 0, . . . , k − 1. Therefore, Gk can be written as Gk = ĜkΓ, since

5

Gk =
∑k−1

j=0 Xj = (
∑k−1

j=0 X̂j)Γ. Now we can rewrite (6) as

Xk = Â0Γ +
N∑
j=1

AjG
j−1
k ĜkΓ− ĜkΓ +

N∑
v=1

AvG
v−1
k Xk +

N−1∑
j=1

N∑
v=j+1

AvG
v−1−j
k XkG

j−1
k ĜkΓ,

=

(
I −

N∑
v=1

AvG
v−1
k

)−1Â0 +

N∑
j=1

AjG
j−1
k Ĝk − Ĝk +

N−1∑
j=1

N∑
v=j+1

AvG
v−1−j
k XkG

j−1
k Ĝk

Γ,

and therefore Xk can be written as the product of an m× r matrix X̂k and Γ. The inverse on the

right-hand-side exists since 0 ≤
∑N

v=1AvG
v−1
k ≤

∑N
v=1AvG

v−1, for every k ≥ 0, and the spectral

radius of
∑N

v=1AvG
v−1 is strictly less than one [2, Theorem 4.15]. Therefore, I −

∑N
v=1AvG

v−1
k is

a nonsingular M-matrix.

As a result, we can focus on finding X̂k as the solution of

X̂k = Â0 +
N∑
j=1

AjG
j−1
k Ĝk − Ĝk +

N∑
v=1

AvG
v−1
k X̂k +

N−1∑
j=1

N∑
v=j+1

AvG
v−1−j
k X̂kΓG

j−1
k Ĝk,

= Â0 +

 N∑
j=1

AjG
j−1
k − I

 Ĝk +

N−1∑
j=0

Sk,j+1X̂k(ΓĜk)
j ,

or, equivalently,

(Sk,1 − I)X̂k +
N−1∑
j=1

Sk,j+1X̂k(ΓĜk)
j =

I − N∑
j=1

AjG
j−1
k

 Ĝk − Â0.

This equation can be solved with the Schur decomposition method in [20, 21], as it was shown in

the previous section with Eq. (7). In this case, the matrix that post-multiplies X̂k is of size r, and

therefore its Schur decomposition and the N powers of the associated upper quasi-triangular matrix

take O(Nr3) time. Also, computing the matrices that pre-multiply X̂k require O(N(m2 + mr2))

time. Finally, each of the r systems to solve takes O(m3), and setting up the matrices associated

to all these systems takes O(Nm2r2). The total cost is O(Nr3 + Nm2r2 + m3r) time, implying

an important gain compared to the general case shown in the previous section, especially when

r � m, a case that often arises when low-rank downward transitions are present.

Remark 1. As noted in the introduction, low-rank downward transitions include the so-called

restricted downward transitions as a special case [21]. In the latter case the matrix A0 has r nonzero

columns only, and therefore its rank is at most r. This type of transitions has been analyzed for

the case of M/G/1-type MCs in [21] and in Section 6 we will compare the method of [21] with the

above Newton iteration.

Remark 2. In general the matrix Â0 may be of mixed sign and therefore so are the Ĝk matrices,

which may potentially cause numerical issues. However, as in the examples of Section 6, the

matrices Â0 and Γ are in fact often nonnegative as these low-rank properties are typically caused

by a renewal in one (or more) of the dimensions of the multi-dimensional MC.

6

4 A new Newton’s iteration

In this section we introduce a new Newton’s iteration that has the same complexity per iteration

as the one discussed in Section 2. Although it does not provide a computational gain, it features

the ability to exploit low-rank local and upward transitions, as will be discussed in Section 5. The

new iteration is based on the matrix U [13], which is the generator of the censored Markov chain

on level i, starting from level i, before the first transition to level i − 1. Based on a level crossing

argument we can write

U =
N∑
i=1

AiG
i−1 =

N∑
i=1

Ai

(
(I − U)−1A0

)i−1
. (8)

To find U we therefore need to solve the equation X −
∑N

i=1Ai
(
(I −X)−1A0

)i−1
= 0, and G can

be obtained from G = (I − U)−1A0 [13]. To this end we define the operators L on 〈0, U〉, and H
on 〈0, G〉 as

LX = (I −X)−1A0 and HW =
N∑
i=1

AiW
i−1.

From the definition of U and the irreducibility of the Markov chain, we know that U is a sub-

stochastic matrix with spectral radius sp(U) < 1 [17, page 98], and thus the matrix (I − U)−1

exists and is equal to
∑

k≥0 U
k. Since, for 0 ≤ X ≤ Y , sp(X) ≤ sp(Y), the matrix (I −X)−1, and

the operator L, are well defined for all X in 〈0, U〉. Clearly,

LX ≤ LY, for X ≤ Y in 〈0, U〉, (9)

HV ≤ HW, for V ≤W in 〈0, G〉. (10)

Also, LU = (I − U)−1A0 = G, and HG =
∑N

i=1AiG
i−1 = U . Hence, the operator L maps 〈0, U〉

on 〈0, G〉, while H maps 〈0, G〉 on 〈0, U〉.
We now define the operator F on 〈0, U〉 as FX = (I −HL)X, such that to find U we need to

solve FX = 0. This can be done iteratively by means of Newton’s method, starting with U0 = 0

and computing Uk+1 = Uk − F ′(Uk)−1FUk, for k ≥ 0, where F ′(Uk)−1 denotes the inverse of the

derivative of F evaluated at Uk. The correctness and quadratic convergence of this iterative scheme

is stated in the following result, which, relying on Lemmas A.1 and A.2 in Appendix A, follows

directly from the Monotone Newton Theorem in [18, 13.3.4].

Theorem 2. Let U0 be an m × m matrix in 〈0, U〉 such that F(U0) ≤ 0, and let the Newton

iterates Uk+1 be given by Uk+1 = Uk − F ′(Uk)−1FUk, for k ≥ 0. Then, if ρ 6= 1, the iterates

satisfy limk→∞ Uk = U , and Uk+1 ≥ Uk, where U is the minimal nonnegative solution of Eq. (8).

Furthermore, the convergence toward U is quadratic, i.e., there is a positive constant c such that

||Uk+1 − U || ≤ c||Uk − U ||2.

7

To comply with the assumptions of Theorem 2 we choose U0 = 0, since F(0) = −
∑N

i=1AiA
i−1
0 ≤

0. Moreover, we can re-state the iterates as Uk+1 = Uk + Yk, where Yk solves F ′(Uk)Yk = −FUk,
for k ≥ 0. Since F ′(Uk)Yk is equal to (see Appendix A)

F ′(Uk)Yk =
(
I −H′(LUk)L′(Uk)

)
Yk,

= Yk −H′(LUk)(I − Uk)−1Yk(I − Uk)−1A0,

= Yk −
N∑
i=2

Ai

i−1∑
j=1

((I − Uk)−1A0)
j−1(I − Uk)−1Yk((I − Uk)−1A0)

i−j ,

Yk is found as the solution to

Yk −
N∑
i=2

Ai

i−1∑
j=1

((I − Uk)−1A0)
j−1(I − Uk)−1Yk((I − Uk)−1A0)

i−j =

N∑
i=1

Ai
(
(I − Uk)−1A0

)i−1 − Uk. (11)

By defining Rk,j =
∑N

i=j+1Ai
(
(I − Uk)−1A0

)i−j−1
(I − Uk)−1, for j = 1, . . . , N − 1, interchanging

the sums, and rearranging the terms, we can rewrite (11) as

Yk −
N−1∑
j=1

Rk,jYk((I − Uk)−1A0)
j =

N∑
i=1

Ai
(
(I − Uk)−1A0

)i−1 − Uk, (12)

which is a linear equation of the form
∑N−1

j=0 BjXC
j = E. As mentioned before, this system can

be solved with the method introduced in [20, 21], a description of which is outlined in Appendix B.

Moreover, since the size of the matrices involved is identical to that of the matrices in the Newton’s

iteration described in Section 2, the time and memory complexity of this method, per iteration, are

O(Nm4) and O(Nm2) respectively. In addition to being well-suited for numerical computation,

the iteration introduced in this section is also able to exploit low-rank local and upward transitions.

This is the topic of the next section.

5 Exploiting low-rank local and upward transitions

In this section we consider the case where the m ×m blocks {Ai, 1 ≤ i ≤ N} can be decomposed

as Ai = ΓÂi, where Γ and Âi are of size m × r and r ×m, respectively. This property is referred

to as low-rank local and upward transitions. From Eq. (8), we can write U as

U =

N∑
i=1

Ai
(
(I − U)−1A0

)i−1
= Γ

(
N∑
i=1

Âi
(
(I − U)−1A0

)i−1)
= ΓÛ ,

which shows that in this case U is of rank r, while G = (I − U)−1A0 is of rank m in general. As a

result we can first compute Û as the solution of

Û =

N∑
i=1

Âi

(
(I − ΓÛ)−1A0

)i−1
,

8

and then obtain G from G = (I − ΓÛ)−1A0. For this purpose we specialize the Newton’s iteration

introduced in the previous section, since the iterates Uk+1 = Uk + Yk, where Yk solves (11), can be

written in the form Uk = ΓÛk. Again, this statement can be proven by induction, and it obviously

holds for k = 0. Assume that Uk = ΓÛk, then from (11) we can write Yk as

Yk = Γ

 N∑
i=2

Âi

i−1∑
j=1

(
(I − Uk)−1A0

)j−1
(I − Uk)−1Yk

(
(I − Uk)−1A0

)i−j
+

N∑
i=1

Âi
(
(I − Uk)−1A0

)i−1 − Ûk
]
,

which means that Yk has the form ΓŶk, and the same holds for Uk+1 = Uk + Yk.

Using this result and Eq. (11) we obtain that Ŷk is the solution to

Ŷk −
N∑
i=2

Âi

i−1∑
j=1

(
(I − Uk)−1A0

)j−1
(I − Uk)−1ΓŶk

(
(I − Uk)−1A0

)i−j
=

N∑
i=1

Âi
(
(I − Uk)−1A0

)i−1 − Ûk,
which, by defining R̂k,j =

∑N
i=j+1 Âi

(
(I − Uk)−1A0

)i−j−1
(I −Uk)−1Γ, and rearranging the terms,

can be rewritten as

Ŷk −
N−1∑
j=1

R̂k,j Ŷk((I − Uk)−1A0)
j =

N∑
i=1

Âi
(
(I − Uk)−1A0

)i−1 − Ûk. (13)

This again is a linear equation of the form
∑N−1

j=0 BjXC
j = E, but in this case the unknown matrix

Ŷk is of size r ×m, and it is pre-multiplied by square matrices of size r, the computation of which

takes O(N(m2r + mr2)) time. As the matrix ((I − Uk)−1A0) is of size m, computing its Schur

decomposition and the powers of the associated upper quasi-triangular matrix requires O(Nm3)

time. To obtain Ŷk it is also necessary to solve m linear systems, the solution of each demands

O(r3) time, while setting-up the matrices involved in the solution of these systems takes O(Nm2r2)

time. The total cost per iteration in this method is therefore O(Nm3 +Nm2r2 +mr3) time.

Remark 3. In general the matrices Âi, for i > 0, may be of mixed sign and therefore so are the

Ûk matrices, which may potentially cause numerical issues. However, as in the examples of Section

6, the matrices Âi and Γ are in fact often nonnegative as these low-rank properties are typically

caused by a renewal in one (or more) of the dimensions of the multi-dimensional MC.

Remark 4. A special case of interest arises when, among {A1, . . . , AN}, the only nonzero matrix

is AN , and this matrix is of rank r. An example of an M/G/1-type Markov chain with this structure

appeared in the study of a production/inventory system with periodic review [6]. As a matter of

fact, the MC analyzed in [6] is of the GI/M/1-type, but, as mentioned before, the methods here can

9

be applied on the dual of the original MC, or directly on the GI/M/1-type MC after some minor

adaptations. In this case we can rewrite Eq. (13) as

Ŷk −
N−1∑
j=1

ÂD
(
(I − Uk)−1A0

)N−j−1
(I −X)−1Γ Ŷk

(
(I − Uk)−1A0

)j
=

ÂD
(
(I − Uk)−1A0

)N−1 − Ûk,
which is again a linear equation of the type

∑N−1
j=0 BjXC

j = E where the unknown matrix is of size

r ×m. Therefore, this system can be solved at the same cost than (13), but the cost of computing

the matrices that pre-multiply Ŷk is significantly lower.

6 Numerical Results

In this section we illustrate the computational behavior of the Newton algorithm by means of

three examples: a Markovian (BMAP/PH/1) queue, a semi-Markovian (SM/PH/1) queue, and a

production/inventory system. The MC to describe the first system is of the M/G/1 type (1), and

has the low-rank downward transitions property, i.e., rank(A0) = r < m. In the second and third

cases the MCs are of the GI/M/1 type (2), and have low-rank local and downward transitions,

i.e., rank([A1A2 . . . AN]) = r < m. Consequently, their duals are M/G/1-type MCs and have low-

rank local and upward transitions. The Newton’s iteration will be compared with the functional

iterations and cyclic reduction, as well as with the restricted transitions approach introduced in

[21] for the case of the Markovian queue.

6.1 The BMAP/PH/1 queue

Our first example is the continuous-time BMAP/PH/1 queue, which can be analyzed with an

M/G/1-type MC that has low-rank downward transitions. We start by describing the arrival

process and service-time distribution at this queue, and then introduce the blocks of the M/G/1-

type MC, and the low-rank property of the block A0.

The arrival process at this queue is a Batch Markovian Arrival process (BMAP) [14], charac-

terized by the ma ×ma matrices {D0, D1, . . . , DL}. This point process is driven by an underlying

continuous-time MC (CTMC) with ma ×ma generator matrix D =
∑L

j=0Dj , where L is the max-

imum batch size. The (i, j)-th entry of Dk holds the rate at which, when the underlying chain is

in state i, a batch of size k arrives and the chain makes a transition to state j, for 1 ≤ i, j ≤ ma,

and 1 ≤ k ≤ L. The off-diagonal entries of the matrix D0 hold the rates related to transitions

without arrivals, and its (negative) diagonal entries are such that De = 0, where 0 is a column

vector with all its entries equal to zero. In general, this process is able to model correlation between

the inter-arrival times (IATs) and the batch size distribution.

On the other hand, the service times follow a Phase-Type (PH) distribution [13, 16] charac-

terized by (ms, α, T). A PH distribution describes the time until absorption in a CTMC with ms

transient states and one absorbing state. The initial probability distribution on the transient states

10

Table 1: BMAP/PH/1 queue - Time (sec) to compute G - m = 40, γ = 0.5 - The effect of L

L 10 20

load FI CR NI RT-CR NI-LR FI CR NI RT-CR NI-LR

0.1 0.02 1.63 0.27 0.06 0.02 0.03 3.16 0.64 0.06 0.02

0.3 0.06 2.92 0.31 0.08 0.00 0.09 4.38 0.75 0.11 0.02

0.5 0.16 3.70 0.31 0.08 0.02 0.25 5.06 0.89 0.13 0.02

0.7 0.45 4.48 0.38 0.11 0.02 0.70 10.1 1.13 0.14 0.02

0.9 1.70 6.39 0.53 0.16 0.02 2.77 11.2 1.27 0.19 0.02

0.99 21.0 7.38 1.05 0.16 0.09 24.4 12.0 12.2 0.20 0.06

L 40 80

load FI CR NI RT-CR NI-LR FI CR NI RT-CR NI-LR

0.1 0.06 8.45 0.84 0.23 0.02 0.13 12.7 1.25 0.78 0.05

0.3 0.16 9.13 0.98 0.33 0.03 0.28 25.5 1.45 0.95 0.06

0.5 0.41 13.3 1.14 0.36 0.03 0.73 29.5 1.67 1.06 0.06

0.7 1.27 14.8 1.31 0.41 0.03 2.25 31.2 1.92 1.19 0.08

0.9 4.75 16.0 1.77 0.45 0.05 8.56 32.2 4.58 1.27 0.14

0.99 42.1 17.5 15.2 0.50 0.16 75.4 34.6 22.1 1.33 0.25

is given by the 1×ms vector α, and the transitions between the transient states are ruled by the

ms ×ms transient generator T . The (i, j)-th entry of this matrix holds the non-negative rate at

which a transition from state i to state j occurs, with i 6= j. The diagonal entries are negative

and such that the matrix T has non-positive row sums, with at least one row having a strictly

negative row-sum. The absorption rate at state i is therefore given by the i-th entry of the vector

t = −Te, for 1 ≤ i ≤ ms. The cumulative distribution function of the time until absorption is

given by F (x) = 1 − α exp(Tx)e, for x ≥ 0. In the remainder of the paper the states of the MCs

that underlie the arrival process and the service-time distribution are also referred to as phases.

To describe this queue we setup a MC with three variables: the number of customers in the

queue, the state of the arrival process, and the state of the current service, if any. By organizing

the state space lexicographically, the resulting MC is of the M/G/1 type, where the level keeps

track of the number of customers, and the phase holds the information regarding the arrival and

service processes. It is easy to see that the blocks {Ai, i ≥ 0} can be defined as

A0 = Ima ⊗ tα, A1 = D0 ⊕ T, Ai = Di−1 ⊗ Ims , i = 2, . . . , L+ 1, (14)

where ⊗ and ⊕ stand for Kronecker product and sum [8], respectively. Clearly, the block A0 can

be written as A0 = Â0Γ, with Â0 = Ima ⊗ t, and Γ = Ima ⊗ α, and therefore this MC has low-

rank downward transitions, a property that the Newton method can exploit as shown in Section

3. We now consider various instances of the BMAP/PH/1 queue, for which we compare the times

to compute G using the general Newton algorithm (NI), with the U-based functional iterations

11

Table 2: BMAP/PH/1 queue - Time (sec) to compute G - L = 10, γ = 0.5 - The effect of m

m 40 80

load FI CR NI RT-CR NI-LR FI CR NI RT-CR NI-LR

0.1 0.02 1.63 0.27 0.06 0.02 0.16 9.05 3.45 0.06 0.03

0.3 0.06 2.92 0.31 0.08 0.00 0.36 15.6 4.03 0.08 0.03

0.5 0.16 3.70 0.31 0.08 0.02 0.94 19.5 4.61 0.09 0.03

0.7 0.45 4.48 0.38 0.11 0.02 2.83 23.8 5.78 0.13 0.05

0.9 1.70 6.39 0.53 0.16 0.02 11.0 33.2 6.36 0.16 0.06

0.99 21.0 7.38 1.05 0.16 0.09 98.4 38.5 57.7 0.19 0.23

m 160 320

load FI CR NI RT-CR NI-LR FI CR NI RT-CR NI-LR

0.1 1.23 57.5 52.9 0.19 0.14 9.66 302 823 0.70 0.86

0.3 2.97 66.7 61.8 0.22 0.19 22.2 437 962 0.84 1.02

0.5 7.91 119 70.8 0.25 0.19 58.2 - 1098 0.92 1.16

0.7 24.5 141 88.8 0.30 0.22 178 - 1373 1.03 1.59

0.9 96.4 199 133 0.34 0.42 690 - 1787 1.13 2.19

0.99 837 231 684 0.36 3.13 6220 - 13642 1.16 4.83

(FI) [13], and point-wise cyclic reduction (CR) [3]. We also show the computation times when

the low-rank structure of A0 is exploited, using the Newton algorithm (NI-LR), and the method

introduced in [21] (RT-CR).

For this queue we consider three sets of experiments, in all of which we let the service time

be the sum of ns PH-distributed stages, each of them with mean one and squared coefficient of

variation (SCV) equal to two. Each of the PH-distributed stages is of order two and matches these

first two moments [25, 26]. Actually, the distribution of each stage is hyper-exponential with two

phases, which is a subclass of order-2 PH distributions. Thus, the size of the PH representation

of the service-time distribution is ms = 2ns. Also, the arrival process is a BMAP with arrival

rate λ, IATs’ SCV equal to 5, and decay rate of the autocorrelation function equal to γ. These

characteristics are matched with a MAP of order two using the method in [7], which for our

experiments (SCV> 1 and γ > 0) results in a sequence of positively correlated hyper-exponential

random variables. The arrival rate is determined by the load, defined as λ/µ, where µ is the service

rate and is equal to 1/ns. The block size is m = mams = 4ns, and the number of blocks N is

equal to L + 1, where L is the maximum batch size. The batch sizes are assumed to be i.i.d. and

uniformly distributed between one and L. As a result, the system is fully determined by ns, L, γ

and the load. In the first set of experiments we set ns = 10, γ = 0.5 and vary ρ and L. These

results are presented in Table 1.

The first clear observation is that for low loads FI beats the other general-purpose methods,

but this behavior is completely reversed for large loads. In the latter case, which is the most

12

Table 3: BMAP/PH/1 queue - Time (sec) to compute G - L = 5, m = 160 - The effect of γ

γ 0.9 0.99

load FI CR NI RT-CR NI-LR FI CR NI RT-CR NI-LR

0.1 0.78 25.1 42.3 0.06 0.09 0.80 24.9 42.3 0.08 0.09

0.3 1.83 46.9 49.4 0.09 0.11 1.97 47.0 49.5 0.09 0.09

0.5 7.39 67.9 63.7 0.11 0.13 10.1 72.8 71.0 0.11 0.14

0.7 52.8 106 84.9 0.14 0.16 435 137 350 0.17 1.33

0.9 225 150 284 0.17 0.30 1978 216 709 0.22 1.56

0.99 2087 184 707 0.22 1.14 4094 244 711 0.25 1.59

time-demanding for all the methods, FI performs very poorly and NI is the best among the three

methods. In fact, in this case, where m is not large, NI is almost always better than CR, even for

loads of 0.99, where NI’s performance worsens significantly. This behavior of NI is clearly connected

to ρ, as defined in Eq. (5), being very close to one, a case in which the linear system that must

be solved in each iteration becomes ill-conditioned. We will discuss this further later on. Also, the

gains in computation time obtained with NI hold despite the moderately large values of L. On

top of these gains, the results clearly show that exploiting the low-rank transitions provides very

important reductions, and NI-LR clearly outperforms all the other methods, including RT-CR.

Recall that in this case the rank of A0 is equal to r = ma = 2, and therefore the ratio m/r is 20.

In the second set of experiments for this queue, the results of which are included in Table 2,

we set the value of L equal to 10, γ equal to 0.5, and let the load and ns, and therefore m, vary.

The first scenario (m = 40, L = 10) coincides with the first scenario in the previous table, but now

we observe the effect of the block size in the computation times. Here again, FI outperforms the

other general-purpose algorithms for low to medium loads, but it falls behind under high loads.

For block sizes up to 160, and loads up to 0.95 (not shown in the table), NI performs better than

CR, although the gains diminish as m increases. Actually, for m = 320, CR outperforms NI, but

this advantage cannot be fully exploited as CR results in an out-of-memory error for high loads (on

a machine with 2GB RAM). For this case, FI also outperforms NI for every load value, showing

how NI suffers from having an m4 term in its time complexity. Regarding the methods that exploit

the low-rank downward transitions, we observe a very important gain compared to general purpose

methods, that becomes more apparent as m increases. This is to be expected since the rank of A0

remains equal to r = ma = 2, and thus the ratio m/r increases with the block size. NI-LR and

RT-CR show a competitive behavior, with NI-LR performing better under small block sizes and

low to medium loads, and RT-CR taking over for large block sizes and high loads.

In the third set of experiments we consider higher values for the decay rate of the autocorrelation

function γ, namely 0.9 and 0.99. We fix L = 5, nS = 40, thus m = 160, and consider a broad set of

load values. The results, summarized in Table 3, show how badly the load affects the behavior of

FI in this case. While for a load of 0.1 it takes less than second to compute G, this method requires

more than an hour when both the load and γ are equal to 0.99. Also, CR shows a significantly

13

Table 4: BMAP/PH/1 queue - Condition number - L = 5, m = 20

load Drift Original Shifted

0.5 0.90069 6.01E+01 3.74E+01

0.9 0.98105 9.77E+02 2.66E+01

0.99 0.99812 1.14E+04 2.49E+01

0.999 0.99981 1.15E+05 2.48E+01

0.9999 0.99998 1.15E+06 2.48E+01

better performance than NI for both low and high loads. Although for mid loads both methods show

similar computation times, under high loads CR is able to run in a third of the time required by

NI, and these are the most time-consuming scenarios. Hence, we observe that CR outperforms NI

when the block size is large and the correlation is high, although CR cannot exploit this advantage

fully due to its large memory requirements, as illustrated in the previous set of experiments. This

example also reveals how large the gains of exploiting the low-rank of A0 can be, using either

RT-CR or NI-LR. In this case, partially due to the large block size of the original chain, NI-LR is

outperformed by RT-CR, and the difference becomes larger as the load increases.

As mentioned above, the performance of NI worsens significantly as the load approaches one.

This behavior can be observed in all the experiments performed in this section. Actually, in

Table 3 this behavior appears even at a load of 0.9, as in this case the correlation is very high.

These results are connected with the drift ρ of the MC, as defined in Eq. (5), being very close to

one. In each iteration of NI applied to the matrix U (Theorem 2) we need to solve the equation

F ′(Uk)Yk = −FUk for Yk, since Uk+1 = Uk + Yk. However, Theorem 2 relies on Lemma A.2, that

ensures that the inverse of F ′(X) exists, for all X ∈ 〈0, U〉, if ρ 6= 1. Moreover, from [15] we

know that if the drift ρ is equal to one, sp(T (G)) = 1, implying (see proof of Lemma A.2) that

F ′(U) is singular. This means that if ρ is close to one (the chain is almost null-recurrent), and

the iterate Uk is close to U , the linear system that must be solved in an iteration of NI is close to

being singular. This is illustrated in Table 4, where we show the condition number of the matrix

associated with the linear system solved in the last iteration of NI (under the label Original). To

be able to compute this number, we have chosen a small example where the block size m is equal

to 20, so the matrix associated with the linear system is of size 400. Clearly, as the load increases

the drift approaches one and the condition number of the matrix worsens. The effect of this ill-

conditioning is that the precision of the solution Yk is not enough to meet the termination criteria,

which is that the infinity norm of the difference between two consecutive iterates be below 10−14.

The algorithm therefore terminates because it reaches the maximum number of iterations allowed

(50), causing long computation times. An alternative to this problem is to use the shift technique

[10, 2], which improves the conditioning of the linear system. This can be seen in the last column

of Table 4, where we show the condition number of the linear system solved in the last iteration of

NI when the shifting is applied. Clearly, the condition number remains stable even when the drift

14

Table 5: SM/PH/1 queue - Time (sec) to compute R - L = 10

q 0.1 0.01

load N FI CR NI NI-LR FI CR NI NI-LR

0.1 6254 0.78 90.8 4.78 1.66 2.50 110 4.94 1.74

0.3 1956 0.41 16.1 0.81 0.39 2.14 17.9 0.91 0.45

0.5 1096 0.36 4.13 0.28 0.17 2.30 4.55 0.28 0.19

0.7 728 0.39 3.72 0.19 0.14 2.75 3.89 0.20 0.14

0.9 523 0.75 1.00 0.14 0.09 5.17 1.20 0.16 0.09

0.99 458 5.13 0.92 0.16 0.11 33.4 1.09 0.33 0.11

is very close to one, avoiding the ill-conditioning found in the original system. Therefore, provided

that convergence occurs (which is not guaranteed in general when applying the shift technique),

this technique can be used to improve the numerical behavior of NI when the drift is close to one.

We must point out that, despite the numerical issues just described, the accuracy of the solutions

obtained with NI is still very good, in many cases better than CR and FI. The accuracy is measured

with the residual error, defined as ∣∣∣∣∣
∣∣∣∣∣G̃−

N∑
i=0

AiG̃
i

∣∣∣∣∣
∣∣∣∣∣
∞

,

where G̃ is the solution found by the iterative method. In all the experiments performed in this

section, even when the drift was very close to one, the residual error for NI was always below 10−14.

6.2 The discrete-time SM/PH/1 queue

We now consider a different queueing example, where the arrival process is described as a semi-

Markovian process with two states. In the first state the inter-arrival times (IATs) follow a geometric

distribution with parameter p, and whenever there is an arrival the process switches to the second

state with probability q. While in the second state, the IATs follow a uniform distribution between

1 and L, and whenever there is an arrival the process jumps back to the first state with probability

q. Also, the service times follow a Negative Binomial distribution with parameters (k, γ), where

k is a positive integer and γ a real number between 0 and 1. This distribution falls within the

class of PH distributions of order k, hence this is an SM/PH/1 queue that can be modeled as a

GI/M/1-type MC using the age process described in [11]. To that end we define the matrices D(n),

for n ≥ 1, the (i, j)-th entry of which holds the probability that, given that the arrival process is

in state i, the next arrival will occur in n time units and after the arrival the underlying process

will make a transition to state j. In our case these matrices are given by

D(n) =

(1− p)n−1p(1− q) (1− p)n−1pq
q
L1{1 ≤ n ≤ L}

1−q
L 1{1 ≤ n ≤ L}

 , n ≥ 1,

15

Table 6: SM/PH/1 queue - Time (sec) to compute R - L = 50

q 0.1 0.01

load N FI CR NI NI-LR FI CR NI NI-LR

0.1 63635 8.48 3600 92.7 26.4 34.5 3629 113 33.1

0.3 20653 5.30 917 15.4 6.00 33.8 919 15.5 5.81

0.5 12057 5.27 231 4.86 2.38 38.6 232 4.92 2.39

0.7 8373 6.50 230 2.69 1.45 52.3 232 3.02 1.58

0.9 6326 13.9 75.3 2.41 1.28 108 75.5 2.89 1.39

0.99 5675 100 75.2 3.13 1.41 755 75.2 3.13 2.56

where 1 is the indicator function. Now, letting (α, T) be the parameters of the PH distribution of

the service times, the blocks of the GI/M/1-type MC that describe the age process of this queue

are given by

A0 = Ima ⊗ T, Ai = D(i)⊗ tα, i ≥ 1,

where ma = 2 as the arrival process has only two states. The block size is thus m = mams = 2k,

where k is the number of stages in the Negative Binomial distribution. The service rate in this

queue is µ = γ/k, and the arrival rate can be found to be λ = 4p
2+(L+1)p . As the load is defined

as λ/µ, for a given k and L we can match a predefined load by adjusting p adequately. To find

the matrix R of this chain we actually solve the dual M/G/1-type MC, relying on Ramaswami’s

duality result [23].

One of the most salient characteristics of this MC is that many blocks are required to make

a =
∑

i≥0Aie numerically stochastic. In this particular case, if we want a to differ from e by less

than ε, we need N =
⌈

ln(ε)
ln(1−p)

⌉
blocks. This is typically a very large number, especially under low

loads, where p must be small enough to match the load. For this queue we consider two instances.

In the first one, we set L = 10, q can be either 0.1 or 0.01, and we let the load take a broad

range of values. The results are included in Table 5, where we also show the number of blocks

N required for a to be numerically stochastic, with ε = 10−14. As expected, under low loads the

number of blocks is very large, which makes CR behave very poorly, while FI outperforms the other

general-purpose methods. However, as the load increases, NI becomes the best of these algorithms,

and the performance of CR improves significantly. Also, a smaller q, which implies longer sojourn

times in each state of the arrival process and the spectral radius of R to be closer to 1, worsens the

performance of all the methods, but especially that of FI under high loads. While CR and NI are

both less sensitive to this change, NI still outperforms CR. In addition, the blocks {Ai, i ≥ 1} can

be written as Ai = (D(i) ⊗ t)(Ima ⊗ α) = ÂiΓ, a feature that the Newton method can exploit, as

explained in Section 5. The results for this method are shown under the label NI-LR, and illustrate

the gains that can be obtained by exploiting this property. In this case the rank r of the blocks

is r = ma = 2 and the ratio m/r is only k = 5. In spite of this small ratio, NI-LR provides

additional reductions compared to NI, and actually outperforms all the other methods in all but a

16

Table 7: Time (sec) to compute R - Production-Inventory system

Case 0 1 2 3

SCV FI CR NI NI-LR FI NI-LR FI NI-LR FI NI-LR

1 0.33 5.77 2.27 0.11 338 280 448 281 539 328

5 0.75 7.91 2.56 0.13 590 327 660 326 731 326

10 1.28 10.2 2.59 0.14 888 326 933 324 993 326

20 2.33 13.5 2.91 0.13 1463 326 1487 324 1527 372

single instance.

The second case only differs from the previous one in that L is set to 50, instead of 10. This

change however has a large effect in the total number of blocks, as can be seen in the third column

of Table 6. The larger number of blocks affects all the methods, but CR is particularly sensitive to

this increase, and even its accuracy becomes compromised as the residual errors become as large

as 10−6. The residual error in this case is measured as∣∣∣∣∣
∣∣∣∣∣R̃−

N∑
i=0

R̃iAi

∣∣∣∣∣
∣∣∣∣∣
∞

,

where R̃ is the solution found by the iterative method. On the other hand, FI and NI perform best

under low and high loads, respectively, and their accuracy does not worsen with the increase in

the number of blocks, with their residual errors being always less than 10−14. Also in this case, in

spite of the small m/r ratio, NI-LR is able to provide a significant reduction in computation time.

6.3 A production/inventory system with periodic review

Our last example is an integrated production and inventory model, first introduced in [6]. In this

model, a retailer faces a demand and uses a smoothing replenishment policy to manage its inventory.

Therefore, depending on the demand and a smoothing parameter β, the retailer places orders to

the production facility, which works under a make-to-order policy. This system can be described

with a GI/M/1-type MC that keeps track of the age of the order currently under production. This

MC has only two nonzero blocks: A0 and AN , where N is the deterministic order inter-arrival time

(due to the periodic review policy). For a detailed description of the model we refer the reader to

[6], and here we simply focus on analyzing four cases, three of which were originally considered in

[6]. These cases differ in the distribution of the demand, which, among others, affects the block

size. We first consider a simple example, called Case 0, where the demand takes values in the set

{5, 6, 7, 8} with probability {0.2, 0.3, 0.3, 0.2}. We set N equal to 16, obtaining a load of 0.8125,

and a block size of 94. Also, in this and all the other cases the smoothing parameter β is equal

to 0.4. Since the load is fixed, we consider various values for the SCV of the production time per

unit, a parameter that has a similar effect as the load: a larger SCV pushes the largest eigenvalue

of the matrix R closer to one.

17

The results are shown in Table 7, where we observe that FI outperforms the other methods,

a result of the not-too-high load, and the large block size, which affects the performance of NI.

In this example, the block AN can be written as ÂNΓ, and for this case Γ has r = 7 rows, and

therefore the ratio m/r is equal to 9.42. As a result, an important gain is obtained with the method

from Section 5, here labeled NI-LR. In fact, this method performs not only better than NI, but

also better than FI for every value of the SCV. Table 7 also includes the results for Cases 1 to 3,

as defined in [6], where the demand takes values between 1 and 20, in each case with a different

distribution. In these three cases the block size is 838, and Γ has r = 39 rows, thus the ratio m/r

is equal to 21.49. Due to the large block size, both CR and NI are unable to run on a 2GB RAM

machine. Also, FI was modified to take advantage of all the blocks {Ai, 1 ≤ i ≤ N −1} being equal

to zero. None of the other methods was modified for this purpose, although both NI and NI-LR can

be specialized to this end. However, that due to the large block size we expect NI to feature very

long computation times. In spite of this asymmetry, we observe that NI-LR is able to outperform

FI in all the instances considered, and while FI’s performance worsens significantly when the SCV

increases, NI-LR’s times remain comparatively stable. In the most variable cases (SCV = 20),

FI takes about 25 minutes to compute R, while NI-LR requires around five minutes only, a very

important gain, especially if many scenarios need to be analyzed. Although the results presented

in Table 7 were obtained with a specific value of the smoothing parameter, namely β = 0.4, we

have considered several values for β and found that the behavior shown here holds in most cases.

However, if the value of β is very small, e.g. β = 0.01, the computation times with FI can easily

exceed the hour, even when the SCV is equal to one. On the other hand, even in these extreme

instances the performance of NI remains very stable, with computation times between 5 and 6

minutes.

A Proof of Theorem 2

For Theorem 2 to follow from the Monotone Newton Theorem in [18, 13.3.4], we must show that

the operator F and its derivative F ′ comply with certain requirements. That is the purpose of the

lemmas to be introduced in this section, which themselves rely on several results in [12], [15] and

[18]. We start by introducing the Gateaux derivatives of L and H as

L′(X)H = (I −X)−1H(I −X)−1A0,

H′(W)H =
N∑
i=2

Ai

i−1∑
j=1

W j−1HW i−1−j .

Clearly,

L′(X) ≤ L′(Y), for X ≤ Y in 〈0, U〉, (15)

H′(V) ≤ H′(W), for V ≤W in 〈0, G〉. (16)

From [12, Lemma 4.2] we know that L′ is Lipschitz-continuous and uniformly bounded in 〈0, U〉.
Therefore, by [18, 3.2.8], L′ is the Fréchet derivative of L, and, by [18, 3.1.6], L is also Lipschitz-

18

continuous. Also, the Lipschitz-continuity and uniform boundedness of H′ has been established in

[12, Lemma 4.1], and therefore H′ is the Fréchet derivative of H. Since both L′ and H′ are Fréchet

derivatives, from [18, 3.1.7] the chain rule applies, and we can define the Fréchet derivative of F as

F ′(X) = I −H′(LX)L′(X). We now establish the following result regarding F and F ′.

Lemma A.1. The operator F is order-concave on 〈0, U〉, and the operator F ′ is antitone and

Lipschitz-continuous on 〈0, U〉.

Proof. This proof follows the lines of that of Lemma 4.3 in [12]. Let X ≤ Y be two m×m matrices

in 〈0, U〉, then

F ′(X)−F ′(Y) = H′(LY)L′Y −H′(LX)L′X ≥ 0,

which follows from (10), (15) and (16), since both LY and LX are in 〈0, G〉. This shows that F ′

is antitone. From this, and [18, 13.3.2], it is easy to see that F is order-concave since(
F ′(X)−F ′(Y)

)
(X − Y) ≤ 0.

The Lipschitz-continuity of F ′ follows from the same property of L, L′ and H′, and the uniform

boundedness of L′ and H′. To see this, let X ≤ Y be two matrices in 〈0, U〉, and write, using the

l∞ norm,

||F ′(X)−F ′(Y)|| = ||H′(LX)L′(X)−H′(LY)L′(Y)||,

= ||H′(LX)L′(X)−H′(LY)L′(X) +H′(LY)L′(X)−H′(LY)L′(Y)||,

≤ ||H′(LX)−H′(LY)|| ||L′(X)||+ ||H′(LY)|| ||L′(X)− L′(Y)||,

≤ γ1||H′(LX)−H′(LY)||+ γ2||H′(LY)|| ||X − Y ||,

≤ γ1γ3||LX − LY ||+ γ2γ4||X − Y || ≤ γ||X − Y ||,

where the second inequality follows from the Lipschitz-continuity and uniform boundedness of L′,
the third inequality from the same properties of H′, and the last one from L being Lipschitz-

continuous.

The next step is to prove that the inverse of F ′(X) exists and is nonnegative for all X ∈ 〈0, U〉.
To this end we introduce the operator T on Rm2

, defined as T (V)H =
∑N

i=1

∑i−1
j=0AiV

jHV i−1−j .

In [15] it was shown that sp(T (G)) < 1 whenever ρ 6= 1, where ρ is defined as in Eq. (5). Using

this result we can state the following lemma.

Lemma A.2. The inverse of F ′(X) exists and is nonnegative for all X ∈ 〈0, U〉, if ρ 6= 1.

Proof. Since F ′(X) = I −H′(LX)L′(X), if we show that sp(H′(LX)L′(X)) < 1 for all X ∈ 〈0, U〉,
this implies that the inverse of F ′(X) exists, it is equal to

∑
k≥0 (H′(LX)L′(X))k and is therefore

nonnegative. And, as for 0 ≤ X ≤ Y we know that sp(X) ≤ sp(Y), it is enough to show that

19

sp(H′(LU)L′(U)) < 1. Thus, we write

H′(LU)L′(U)H = H′(LU)(I − U)−1H(I − U)−1A0,

=
N∑
i=2

Ai

i−1∑
j=1

(LU)j−1(I − U)−1H(I − U)−1A0(LU)i−1−j ,

=

N∑
i=2

Ai

i−1∑
j=1

Gj−1(I − U)−1HGi−j ,

=
N∑
i=1

Ai

i−1∑
j=0

Gj(I − U)−1HGi−j−1 −
N∑
i=1

AiG
i−1(I − U)−1H,

= T (G)(I − U)−1H − U(I − U)−1H = (T (G)− IU) (I − U)−1H.

This means that we can write

F ′(U) = I − (T (G)− IU) (I − U)−1 = (I − T (G)) (I − U)−1,

which is invertible if and only if (I − T (G)) is invertible, which is itself invertible if and only

if sp(T (G)) < 1, and, as mentioned above, from [15] this is true if ρ 6= 1. Thus, if ρ 6= 1,

(I − H′(LU)L′(U)) is invertible, and therefore sp(H′(LU)L′(U)) < 1, which suffices to prove the

lemma.

B Solving the general linear system

The linear system we are interested in is

N∑
i=0

BiXC
i = E, (17)

where X is an m × r unknown matrix, Bi, for 0 ≤ i ≤ N , is a square matrix of size m, C is a

square matrix of size r, and E is an m× r matrix. This is a linear system with mr unknowns and

equations, that can be solved in O(m3r3) time with general procedures. Thus, such procedures

are only feasible for small values of both m and r. We now show the procedure introduced in

[20, 21] to reduce the time complexity to O(m3r + Nr3 + Nm2r2). The key observation to solve

this system is that all the matrices that post-multiply the unknown matrix X are powers of the

same matrix C. This feature can be exploited by applying a real Schur decomposition [8] to C,

i.e., to find an orthogonal matrix Θ ∈ Rr×r such that Θ′CΘ = T , where ′ denotes the transpose

operator. Recall that a matrix Θ is called orthogonal if Θ′Θ = ΘΘ′ = I. The matrix T ∈ Rr×r

is upper quasi-triangular, meaning it is block upper triangular and the diagonal blocks are of size

one or two [8]. By post-multiplying (17) by Θ, and since Θ′CiΘ = T i for any nonnegative integer

i, we obtain

−
N∑
i=0

BiXΘT i = EΘ.

20

Now let F = EΘ, which is a known matrix, and let Y = XΘ, to obtain

−
N∑
i=0

BiY T
i = F. (18)

This system can be equivalently written column-wise as

−
N∑
i=0

Bi

r∑
j=1

[T i]jkYj = Fk, (19)

for k = 1, . . . , r, where Mk and [M]i,j are the k-th column and the (i, j)-th entry of a matrix M ,

respectively.

In Eq. (18) the matrices that post-multiply Y are all upper quasi-triangular matrices, and all

they have the same block structure as they are powers of T . Therefore it is possible to iteratively

compute the columns Yk, starting with Y1. Let us assume that we have already found {Y1, . . . , Yk−1}
and we want to compute Yk, for some 1 ≤ k ≤ r. Given the upper quasi-triangular nature of T ,

there are two possibilities. The first is that the entry [T]k+1,k is zero, meaning that Equation (19)

can be rewritten as

−
N∑
i=0

Bi[T
i]kkYk = Fk +

N∑
i=0

Bi

k−1∑
j=1

[T i]jkYj .

Therefore we can find the column Yk by solving a linear system of size m, which requires O(m3)

time. The second case is when [T]k+1,k 6= 0, which, due to the upper quasi-triangular structure

(the diagonal blocks are at most of size two) implies that [T]k+2,k+1 = 0. Hence we can find the

columns Yk and Yk+1 simultaneously by solving the system

−

[∑N
i=0Bi[T

i]kk
∑N

i=0Bi[T
i]k+1,k∑N

i=0Bi[T
i]k,k+1

∑N
i=0Bi[T

i]k+1,k+1

][
Yk

Yk+1

]
=

[
F̂ k−1k

F̂ k−1k+1

]
,

where F̂ lk = Fk +
∑N

i=0Bi
∑l

j=1[T
i]jkYj , for 1 ≤ l ≤ k − 1 and 1 ≤ k ≤ r. This is a linear system

with 2m unknowns that requires O(m3) time to be solved. In summary, we can start by finding

the first (two) column(s) of Y and iteratively compute the others. After we have computed Y , X

is obtained from X = YΘ′. The Schur decomposition of C and the powers of T require O(Nr3)

time. In addition, we need to compute the matrices that define the r linear systems, at a cost of

O(Nm2r2) time, while the solution of each of these systems takes O(m3). The total cost of this

approach is therefore O(rm3 +Nr3 +Nm2r2).

C The RT-CR algorithm

In this section we briefly discuss the RT-CR algorithm presented in [21] to compute the G matrix of

an M/G/1-type MC with restricted downward transitions, i.e., for which the m×m matrix A0 has

only r < m non-zero columns. Without loss of generality we may assume that the first r columns

of A0 are non-zero. State k ≥ 0 of an M/G/1-type Markov chain is typically denoted as (i, j) with

21

i = bk/mc and j = (k mod m)+1, where i is called the level and j the phase of the Markov chain.

In our setting, this implies that the phase must be part of {1, . . . , r} whenever the level decreases

by one. In this case, the G matrix can be written as

G =

[
G+ 0

G0 0

]
,

where G+ (resp. G0) is an r × r (resp. (m − r) × r) matrix [17]. The RT-CR algorithm first

computes the matrix G+ in an iterative manner and afterwards computes G0 by solving a linear

system of the form
∑N−1

i=0 BjG0(G+)i = E, for some (m − r) × (m − r) matrices Bj and m × r
matrix E that are easy to obtain from Ai and G+.

The RT-CR algorithm determines the matrix G+ by first constructing a new MC that observes

the original M/G/1-type MC, characterized by the Ai matrices for i ≥ 0, when its phase is part

of the set {1, . . . , r} only. This new MC is also an M/G/1-type MC characterized by the r × r
blocks Āi, for i = 1, . . . ,M , where M is determined numerically such that

∑M
i=0 Āi is numerically

stochastic (for details on how to compute the Āi matrices we refer to [21]). The r × r matrix G of

this new MC was also shown to be identical to G+. Hence, to compute G+ the RT-CR algorithm

first constructs the matrices Āi, for i = 0, . . . ,M , and then uses the cyclic reduction (CR) algorithm

to compute G+.

The time complexity to compute G+ depends to a large extend on M . More precisely, the

construction of the Āi matrices requires about O(MNrm2) time, while the CR algorithm uses only

O(d′r3 +r2d′ log d′), where d′ is the numerical degree of the power series evaluated at each step. As

indicated in [21], the computation of the matrix G0 from G+ can be performed in O((m− r)3r +

Nr3 + N(m − r)2r2) time. Hence, the Newton iteration of Section 3 is very different from the

LR-CR algorithm and whether it outperforms the LR-CR algorithm depends to a large extend on

the value of M which is often considerably larger than N .

References

[1] N. Akar and K. Sohraby. An invariant subspace approach in M/G/1 and G/M/1 type Markov

chains. Communications in Statistics: Stochastic Models, 13:381–416, 1997.

[2] D. Bini, G. Latouche, and B. Meini. Numerical Methods for Structured Markov Chains. Oxford

University Press, 2005.

[3] D. Bini and B. Meini. On the solution of a nonlinear matrix equation arising in queueing

problems. SIAM Journal of Matrix Analysis and Applications, 17:906–926, 1996.

[4] D. Bini, B. Meini, and V. Ramaswami. Analyzing M/G/1 paradigms through QBDs: the role

of the block structure in computing the matrix G. In G. Latouche and P. Taylor, editors,

Advances in Algorithmic Methods for Stochastic Models, pages 73–86. Notable Publications,

New Jersey, 2000.

22

[5] D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured Markov chains solver: software

tools. In SMCtools Workshop, Pisa, Italy, 2006. ACM Press.

[6] R.N. Boute, M.R. Lambrecht, and B. Van Houdt. Performance evaluation of a produc-

tion/inventory system with periodic review and endogenous lead times. Naval Research Lo-

gistics, 54:462–473, 2007.

[7] J. E. Diamond and A. S. Alfa. On approximating higher order MAPs with MAPs of order

two. Queueing Systems, 34:269–288, 2000.

[8] G. H. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University Press,

1996.

[9] W. K. Grassmann and J. Tavakoli. Comparing some algorithms for solving QBD processes

exhibiting special structure. Information systems and operations research, 48:133–141, 2010.

[10] C. He, B. Meini, and N.H. Rhee. A shifted cyclic reduction algorithm for quasi-birth-and-death

problems. SIAM Journal of Matrix Analysis and Applications, 23:673–691, 2001.

[11] Q. He. Age process, workload process, sojourn times, and waiting times in a discrete time

SM[K]/PH[K]/1/FCFS queue. Queueing Systems: Theory and Applications, 49:363–403, 2005.

[12] G. Latouche. Newton’s iteration for non-linear equations in Markov chains. IMA Journal of

Numerical Analysis, 14:583–598, 1994.

[13] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Mod-

eling. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, PA, 1999.

[14] D. Lucantoni. New results on the single server queue with a batch markovian arrival process.

Stochastic Models, 7:1–46, 1991.

[15] M.F. Neuts. Moment formulas for the Markov renewal branching process. Advances in Applied

Probability, 8:690–711, 1976.

[16] M.F. Neuts. Matrix-Geometric Solutions in Stochastic Models. The John Hopkins University

Press, Baltimore, 1981.

[17] M.F. Neuts. Structured stochastic matrices of M/G/1 type and their applications. Marcel

Dekker Inc., 1989.

[18] J.M. Ortega and W.C. Rheinblodt. Iterative solution of nonlinear equations in several vari-

ables. Academic Press, 1970.

[19] J. F. Pérez and B. Van Houdt. Analyzing M/G/1-type Markov chains with low-rank down-

ward transitions. In 6th International Workshop on the Numerical Solution of Markov Chains

(NSMC), pages 75–78, Williamsburg (USA), 2010.

23

[20] J.F. Pérez. Performance Modeling: Structured Markov chains, optical grids and switches. PhD

thesis, University of Antwerp, 2010.

[21] J.F. Pérez and B. Van Houdt. The M/G/1-type Markov chain with restricted transitions and

its application to queues with batch arrivals. Probability in the Engineering and Informational

Sciences (PEIS), 25(4):487–517, 2011.

[22] V. Ramaswami. Nonlinear matrix equations in applied probability - solution techniques and

open problems. SIAM Review, 30:256–263, 1988.

[23] V. Ramaswami. A duality theorem for the matrix paradigms in queueing theory. Communi-

cations in Statistics Stochastic Models, 6:151–161, 1990.

[24] P. G. Taylor and B. Van Houdt. On the dual relationship between Markov chains of GI/M/1

and M/G/1 type. Advances in Applied Probability, 42:210–225, 2010.

[25] M. Telek and A. Heindl. Matching moments for acyclic discrete and continuous phase-type

distributions of second order. International Journal of Simulation Systems, Science & Tech-

nology, 3:47–57, 2002.

[26] W. Whitt. Approximating a point process by a renewal process, I: Two basic methods. Oper-

ations Research, 30:125–147, 1982.

24

