
The M/G/1-type Markov chain with restricted transitions and

its application to queues with batch arrivals

Juan F. Pérez∗ Benny Van Houdt

Performance Analysis of Telecommunication Systems (PATS)

Department of Mathematics and Computer Science

University of Antwerp - IBBT

Middelheimlaan 1, B-2020 Antwerp, Belgium

Email: juanfernando.perez@ua.ac.be, benny.vanhoudt@ua.ac.be

Abstract

We consider M/G/1-type Markov chains where a transition that decreases the value

of the level triggers the phase to a small subset of the phase space. We show how this

structure, referred to as restricted downward transitions, can be exploited to speed-up

the computation of the stationary probability vector of the chain. To this end we de-

fine a new M/G/1-type Markov chain with a smaller block size, the G matrix of which

is used to find the original chain’s G matrix. This approach is then used to analyze

the BMAP/PH/1 queue and the BMAP[2]/PH[2]/1 preemptive priority queue, yielding

significant reductions in computation time.

1 Introduction

An M/G/1-type Markov chain (MC) [19] is a two-dimensional process {(Nt, Xt), t ≥ 0} where

the level variable Nt takes values on N, while the phase variable Xt takes values on a finite

set of size mb or m, depending on whether the level is equal to or greater than zero. In an

M/G/1-type MC the transition rates are level-independent and the level can only decrease

by one during a single transition. Therefore, the generator matrix Q of an M/G/1-type MC

∗The current affiliation of Juan F. Pérez is with Universidad de los Andes, Bogotá,Colombia. Email address:

jf.perez33@uniandes.edu.co

1

is of the form

Q =



B0 B1 B2 B3 · · ·
C0 A1 A2 A3 · · ·

A0 A1 A2 · · ·
A0 A1 · · ·

0
. . .

. . .


, (1)

where (Ai)i≥0 are m ×m matrices, B0 is an mb ×mb matrix, C0 is an m ×mb matrix, and

(Bi)i≥1 are mb × m matrices. All these matrices have nonnegative real entries, with the

exception of the diagonal entries of B0 and A1, which are negative and such that the matrix

Q has zero row sums. There are two main steps to determine the stationary probability vector

of this MC. The first step is to find the matrix G, that is, the minimal non-negative solution

of the matrix equation

∞∑
i=0

AiG
i = 0. (2)

This equation can be solved using iterative algorithms such as (linearly-convergent) functional

iterations (FI) [19, 14] or the (quadratically-convergent) cyclic reduction (CR) algorithm [4, 3].

The second step is to compute the stationary probability vector by means of Ramaswami’s

formula [22], which relies on the matrix G.

Although it is possible to analyze a broad range of systems using M/G/1-type MCs,

they suffer from the curse of dimensionality. If m becomes large, the algorithms to find G

and the stationary vector may require long computation times. For instance, FI [19] requires

O(Nm3) time per iteration, where N is the smallest integer such that Ai is (numerically) zero

for i > N . However, there are cases where the solution of Equation (2) can be circumvented

by exploiting the structure of the blocks (Ai)i≥0. An example of this is when the matrix A0

has only one nonzero column. In this case it is possible to find the matrix G explicitly without

resorting to iterative algorithms [14, 23]. The main contribution of this paper is to analyze

and exploit the more general case where the matrix A0 has 1 < r � m nonzero columns.

This structure implies that a transition that decreases the value of the level can only trigger

the phase to a small subset of the phase space. Therefore, we refer to this class of MCs as

M/G/1-type MCs with restricted downward transitions. We show how this structure can be

exploited to reduce the total computation time to find the stationary probability vector of

the chain. For this purpose, we define a new M/G/1-type MC by observing the original chain

when the phase variable is in one of the r phases corresponding to the nonzero columns of

A0. The blocks of this new MC are of size r and therefore the solution of this chain can

be carried out significantly faster. In fact, computing the blocks of the censored chain takes

2

O(MNrm2) time, where M is the number of blocks of this chain. Then we find the matrix

G of the censored chain, which requires O(Mr3) time per iteration. The final step to fully

determine the matrix G of the original chain is to solve a linear system, this is done in a single

step that requires O((m− r)3r +Nr3 +N(m− r)2r2) time.Our approach therefore offers an

advantage compared to general-purpose methods, which require O(Nm3) time per iteration,

especially when the ratio m/r is large. In addition, after finding the matrix G we exploit its

structure to speed-up the computation of the stationary probability vector.

Previous work on analyzing MCs with restricted transitions has centered mainly on Quasi-

Birth-and-Death (QBD) processes [18, 11, 21]. QBDs can be seen as a particular case of

M/G/1-type MCs where the blocks {Ai}i≥3 and {Bi}i≥2 are equal to zero. To the best of our

knowledge, M/G/1-type MCs with restricted transitions have only been treated in [5]. There

the authors exploit the referred structure to speed-up the computation of G by using two

specific iterative algorithms: a functional iteration and a sub-Newton method. However, in

[5] an additional restriction is imposed on the chain (see Remark 2 on page 5), which reduces

the applicability of their method. For instance, the MC to model the BMAP[2]/PH[2]/1

preemptive priority queue is of the M/G/1-type and has the restricted-downward-transitions

property. However, this queue cannot be analyzed with the methods introduced in [5] because

of the additional restrictions. The approach introduced in this paper is closely related to the

one presented in [21] for QBDs. In [21] the structure of the matrix A0 is employed to speed-

up the computation of the matrix G, from which the stationary probability vector can be

easily obtained as it has the so-called matrix-geometric property. Here we not only extend

[21] to exploit the structure of A0 to compute the matrix G of an M/G/1-type MC, but we

also make use of this structure to expedite the computation of the stationary probability

vector, for which the matrix-geometric property does not hold. Besides, while our focus is

on M/G/1-type MCs with restricted downward transitions, the approach presented here can

be applied mutatis mutandis to compute the matrix R of a GI/M/1-type MC with restricted

upward transitions. In these MCs, an upward transition, which increases the level by at

most one, can only occur if the phase variable is in a small subset of the phase space. After

computing the matrix R, the stationary probability vector can be easily obtained as it also

has the matrix-geometric form.

Even though at first sight the form assumed for A0 appears to be rather restrictive, this

structure actually arises or can be induced in several, even well-studied, queueing models. Sec-

tion 4 will show how the BMAP/PH/1 queue and the BMAP[2]/PH[2]/1 preemptive priority

queue can be modeled as M/G/1-type MCs with restricted downward transitions. Moreover,

these queues provide some additional structure which can be exploited in combination with

our general approach to further reduce the computation time to find the stationary probability

3

vector. These two queueing systems will be used to illustrate numerically the substantial gain

in computation time that can be obtained by using the methods introduced in this paper. In

fact, for the BMAP[2]/PH[2]/1 preemptive priority queue we found that our approach is not

only faster than solving the original M/G/1-type MC, but it is also faster than other meth-

ods previously proposed to find the queue-length distribution of this particular queue [25].

Although we consider these two queues in detail, there are many other systems where the re-

stricted transitions arise, including the meteor burst packet model in [5] and the PH/MAP/1

queue with batch services.

In the next section we will show how the computation of the matrix G can be sped up

by exploiting the restricted-transitions structure. After finding G, this structure can be used

to accelerate the computation of the stationary probability vector, as discussed in Section

3. The performance of our approach is illustrated through the numerical results presented

in Section 4. Although this paper deals with MCs in continuous time, all the results can be

easily translated and applied to discrete-time MCs.

2 Analyzing M/G/1-type MCs with restricted transitions

In this section we focus on the the computation of the matrix G, the minimal nonnegative

solution of Equation (2), for a general M/G/1-type MC with restricted downward transitions.

The development here follows the lines of [21], where a similar analysis was carried out for

QBD processes with restricted transitions. To start with, let us partition the phase space

of the M/G/1-type MC, i.e., the set {1, . . . ,m}, into two subsets: S+ = {1, . . . , r} and

S− = {r + 1, . . . ,m}. We can partition the matrices Ai accordingly as

Ai =

[
A++
i A+−

i

A−+
i A−−i

]
, i = 0, . . . , N, (3)

where N is the smallest integer such that Ai = 0 and Bi = 0 for i > N , and A++
i and A−−i

are square matrices of size r and m− r, respectively. We assume that the MC is irreducible

and therefore the matrices A++
1 and A−−1 are transient generators and their inverses exist.

As stated in the previous section, our focus is on the case where the block A0 has only a few

nonzero columns. Here we assume, without loss of generality, that those columns are the first

r � m, and therefore the matrix A0 can be written as

A0 =

[
A++

0 0

A−+
0 0

]
. (4)

In general, to compute the matrix G one must rely on iterative algorithms like FI or CR

[19, 14, 3]. However, if the matrix A0 has the structure in (4) and if r = 1 (S+ is unitary),

4

the matrix G can be computed explicitly [14]. Here we assume that A0 has r > 1 nonzero

columns. The main consequence of this structure is that the matrix G also has r nonzero

columns. To see this recall that the (i, j)-th entry of the matrix G holds the probability that,

if the chain starts in state (k, i), the first visit to level k− 1 occurs by visiting state (k− 1, j),

for k > 1, 1 ≤ i, j ≤ m [14]. In addition, in an M/G/1-type MC, if the chain starts in level k

the first visit to level k−1 must be a downward transition from level k to level k−1, which is

governed by A0. If this matrix has the structure in (4), the first visit to level k − 1, starting

from level k, must be to a state with phase in S+. Therefore, only the first r columns of G

are different from zero and this matrix can be written as

G =

[
G+ 0

G0 0

]
,

where G+ (resp. G0) is an r × r (resp. (m − r) × r) matrix. In the following subsections

we show how the matrices G+ and G0 can be computed separately such that the total time

required to compute G reduces significantly when r � m.

Remark 1. In addition to the structure in (4), we have found M/G/1-type MCs where the

blocks feature an additional structure, e.g., when modeling the batch queues introduced in Sec-

tion 4. The most relevant feature is that the matrices (A−−i)Ni=2 can be written as the product

of a scalar and a common matrix, i.e., A−−i = ciK, for 2 ≤ i ≤ N . Another observation is

that the blocks (A+−
i)Ni=2 and (A−+

i)Ni=2 are actually equal to zero. This additional structure

will be exploited in those places where it may provide a significant gain in the computation

time to find the stationary probability vector. Apart from this, the remainder of the paper

focuses mostly on the structure in (4), so that the approach proposed here can be used in other

applications where only this structure arises.

Remark 2. As mentioned in the introduction, the approach in [5] also deals with M/G/1-type

MCs with restricted transitions. However, this method imposes an additional restriction on

the blocks of the MC. This restriction can be translated into our notation by imposing that

Ai =

[
A++ A+−

A−+ A−−

][
a+
i I 0

0 a−i I

]
, i ≥ 0,

where (a+
i)i≥0 and (a−i)i≥0 are nonnegative scalars and a−0 = 0. The most restrictive impli-

cation of this assumption is that the block A1 (transitions within the same level) must have

the same pattern (up to a multiplication by a scalar) than the blocks (Ai)i≥2 (transitions to

upper levels). This means that, for instance, the BMAP[2]/PH[2]/1 priority queue cannot be

modeled with the approach in [5] as the transitions within the same level (arrivals and ser-

vice completions of high-priority customers) and those to upper levels (arrivals of low-priority

customers) trigger very different transitions on the phase variable (see Appendix A).

5

2.1 Computing G+

The computation of the matrix G is split in two steps: we first compute G+ by using a

censoring argument and afterward we obtain G0 by solving a linear system. To compute

G+ we define a new process by observing the original M/G/1-type MC only when the phase

variable is in S+. Since in the original chain any downward transition takes the chain to a

state with phase in S+, the level in the new chain can decrease by at most one in a single

transition. Also, in the original chain there can be many upward transitions between two visits

to states with phase in S+. Therefore, the chain that results from observing the original MC

when the phase variable is in S+ is also of the M/G/1 type. In this case however the size of

the blocks is equal to r, which is assumed to be significantly smaller than m. Let the r × r
blocks (Āi)i≥0 characterize the behavior, away from the boundary, of the new M/G/1-type

MC, and let Ḡ be the associated minimal nonnegative solution of Equation (2). As stated

before, the (i, j)-th entry of Ḡ holds the probability that, given that the chain starts in state

(k, i), the first visit to level k− 1 occurs by visiting state (k− 1, j), for 1 ≤ i, j ≤ r. However,

this is the same definition of the (i, j)-th entry of G+, since in the original chain the first visit

to level k − 1, starting from level k, can only occur to a state with phase in S+. Therefore,

to compute G+ we can compute the blocks (Āi)i≥0 of the censored process and then solve

Equation (2) to obtain Ḡ, which is equal to G+.

To determine the blocks (Āi)i≥0 we define the (m−r)×r matrices (Wl)l≥−1. The (i, j)-th

entry of Wl holds the probability that, given that the chain starts in level k > 1 and phase

i ∈ S−, the first passage to a state with phase in S+ occurs by visiting state (k + l, j),

for j ∈ S+ and l ≥ −1. Relying on these matrices, the blocks (Āi)i≥0 can be computed by

conditioning on the first transition in the original chain. For instance, to define the matrix Ā0

there are two possible sets of transitions: the chain may move directly from (k, i) to (k− 1, j)

with i, j ∈ S+ (according to A++
0); or it may first move within the same level to a state (k, l)

with l ∈ S− (according to A+−
1), and then make a number of transitions that will take the

chain to a state (k− 1, j) with j ∈ S+, while avoiding any state with phase in S+ (according

to W−1). Therefore, the matrix Ā0 can be obtained as Ā0 = A++
0 + A+−

1 W−1. Other paths

from level k to k − 1 are ruled out because they would involve either a direct transition to a

state with phase in S+, or a transition to a state with phase in S−, but level greater than k,

from which, to return to k − 1, it would be necessary to visit states in level k with phase in

S+. By proceeding in a similar manner we find that the blocks (Āi)i≥0 are given by

Āi =


A++
i +

∑i+1
j=1A

+−
j Wi−j , 0 ≤ i ≤ N − 1,

A++
N +

∑N
j=1A

+−
j WN−j , i = N,∑N

j=1A
+−
j Wi−j , i ≥ N + 1.

(5)

6

Recall, Ai = 0 for i > N .

We now turn to the computation of the matrices (Wl)l≥−1. We start by noticing that,

to go from state (k, i) to (k − 1, j), with i ∈ S− and j ∈ S+, while avoiding any states with

phase in S+, the chain must make a downward transition immediately after a sojourn in the

set of states (k, l) with l ∈ S−. This implies that W−1 is given by W−1 = (−A−−1)−1A−+
0 . In

a similar manner we find that W0 is given by W0 = (−A−−1)−1(A−+
1 + A−−2 W−1). Here the

chain has the additional option of going from level k to level k+1 (according to A−−2) and then

returning to level k while avoiding states with phase in S+ (according to W−1). Following

the same argument we find that the matrices (Wl)l≥−1 can be computed recursively as

Wi =


(−A−−1)−1

(
A−+
i+1 +

∑i+2
j=2A

−−
j Wi−j+1

)
, −1 ≤ i ≤ N − 2

(−A−−1)−1
(
A−+
N +

∑N
j=2A

−−
j WN−j

)
, i = N − 1

(−A−−1)−1
∑N

j=2A
−−
j Wi−j+1, i ≥ N

(6)

From Equation (5) we observe that to compute Āi it is necessary to keep track of

{Wi−N , . . . ,Wi−1}, for i > N . Therefore, we must store N matrices of size (m − r) × r.

After obtaining Āi, the value of Wi is computed as a function of {Wi−N+1, . . . ,Wi−1}, for

i ≥ N . Then, the value of Wi−N can be discarded since the set {Wi−N+1, . . . ,Wi} suffices to

determine Āi+1. This procedure continues until the matrix ĀM is computed, where M is the

smallest positive integer such that
∑M

i=0 Āi1 > −ε1, where ε = 10−14 and 1 is a column vector

with all its entries equal to one. For i > N , obtaining each block Āi requires us to compute

one additional matrix Wi, which takes O(Nr2(m− r)) time. After computing Wi, the value

of Āi can be obtained in O(Nr(m− r)2) time. Therefore, the computation of all the blocks

(Āi)
M
i=0 requires O(M(Nr(m − r)2) + Nr2(m − r)), where, since r is assumed to be much

smaller than m, the dominant term is O(MNrm2). Once the blocks (Āi)
M
i=0 are computed,

we obtain G+ by solving Equation (2) with either FI [19] or CR [4]. As mentioned before, FI

requires O(Mr3) time per iteration. The cost of cyclic reduction is O(d′r3 + r2d′ log d′) per

iteration, where d′ is the numerical degree of a matrix power series that is updated at each

iteration, starting with a power of 2 greater than or equal to M . Typically, the value of d′

decreases rapidly in the positive-recurrent case [3].

2.2 Computing G0

Once G+ has been computed, we can obtain G0 by solving a linear system. This can be

understood by considering the partitioning in (3) and the structure in (4) to rewrite Equation

7

(2) as

−

[
A++

0 0

A−+
0 0

]
=

N∑
i=1

[
A++
i A+−

i

A−+
i A−−i

][
G+ 0

G0 0

]i
=

N∑
i=1

[
A++
i A+−

i

A−+
i A−−i

][
Gi+ 0

G0G
i−1
+ 0

]
.

Now, extracting the lower-left block we find

−
N∑
i=1

A−−i G0G
i−1
+ = A−+

0 +
N∑
i=1

A−+
i Gi+, (7)

which is a general linear system of the form
∑N

i=1AiXBi = C, where G0 is the only unknown

term. This system has (m − r)r unknowns and equations, therefore its solution by general

procedures has a time complexity of O((m−r)3r3). Hence, this system can be solved directly

if r is very small. Another possibility is to use an iterative approach as proposed in [2],

although these are not guaranteed to converge to the actual solution. However, the system

(7) has a special characteristic: the matrices that post-multiply the unknown matrix G0 are

all powers of the same matrix G+, that is Bi = Gi−1
+ . In Section 2.2.1 we devise a way to

exploit this fact, reducing the time complexity to O((m− r)3r +Nr3 +N(m− r)2r2). Also,

as indicated in Section 2.2.2, there are two special cases in which the general system (7) can

be reduced to a Sylvester matrix equation [10], and can therefore be solved in O((m − r)3)

time with the Hessenberg-Schur algorithm proposed in [9].

2.2.1 The general case

The key to solve Equation (7) is to apply a real Schur decomposition [10] to G+, i.e., to find an

orthogonal matrix U ∈ Rr×r such that U ′G+U = T , where ′ denotes the transpose operator.

Recall that a matrix U is called orthogonal if U ′U = UU ′ = I. The matrix T ∈ Rr×r is upper

quasi-triangular, meaning it is block upper triangular and the diagonal blocks are of size one

or two [10]. We now post-multiply (7) by U to obtain

−
N∑
i=1

A−−i G0UU
′Gi−1

+ U =
N∑
i=0

A−+
i Gi+U,

which, since U ′Gj+U = T j for any nonnegative integer j, can be rewritten as

−
N∑
i=1

A−−i G0UT
i−1 =

N∑
i=0

A−+
i Gi+U.

Now let Y =
∑N

i=0A
−+
i Gi+U , which is a known matrix, and let X = G0U , to obtain

−
N∑
i=1

A−−i XT i−1 = Y. (8)

8

This system can be equivalently written in a column-wise form as

−
N∑
i=1

A−−i

r∑
j=1

[T i−1]j,kXj = Yk, (9)

for k = 1, . . . , r, where Mk and [M]i,j are the k-th column and the (i, j)-th entry of a matrix

M , respectively.

Notice that, in Equation (8), the matrices that post-multiply X are all upper quasi-

triangular matrices, and all they have the same block structure as they are powers of T .

Therefore it is possible to iteratively compute the columns Xk, starting with X1. Let us

assume that we have already found {X1, . . . , Xk−1} and we want to compute Xk, for some

1 ≤ k ≤ r. Given the upper quasi-triangular nature of T there are two possibilities. The first

is that the entry [T]k+1,k is zero, meaning that Equation (9) can be rewritten as

−
N∑
i=1

A−−i [T i−1]k,kXk = Yk +

N∑
i=1

A−−i

k−1∑
j=1

[T i−1]j,kXj . (10)

Therefore we can obtain the column Xk by solving a linear system of size m−r, which requires

O((m − r)3) time. The second case is when [T]k+1,k 6= 0, which, due to the upper quasi-

triangular structure (the diagonal blocks are at most of size two) implies that [T]k+2,k+1 = 0.

Therefore we can find the columns Xk and Xk+1 simultaneously by solving the system

−

[∑N
i=1A

−−
i [T i−1]k,k

∑N
i=1A

−−
i [T i−1]k+1,k∑N

i=1A
−−
i [T i−1]k,k+1

∑N
i=1A

−−
i [T i−1]k+1,k+1

][
Xk

Xk+1

]
=

[
Ŷ k−1
k

Ŷ k−1
k+1

]
, (11)

where Ŷ l
k = Yk+

∑N
i=1A

−−
i

∑l
j=1[T i−1]j,kXj , for 1 ≤ l ≤ k−1 and 1 ≤ k ≤ r. This is a linear

system with 2(m− r) unknowns that requires O((m− r)3) time to be solved. As a result we

can start by finding the first (two) column(s) of X and iteratively compute the others. After

computing X, G0 is obtained from G0 = XU ′. Obtaining the Schur decomposition of G+

and the powers of T requires O(Nr3). Also, setting up the right-hand side in equations (10)

and (11) to find all the columns of X takes O(N(m− r)2r2) time. As a result, the matrix G0

can be found in O((m− r)3r +Nr3 +N(m− r)2r2) time.

2.2.2 Two special cases

There are two special cases where an O((m− r)3) algorithm can be used to compute G0 from

G+. In the first case it is assumed that only one of the (A−−i)Ni=2 matrices is different from

zero. If A−−k is the only matrix different from zero, for some 2 ≤ k ≤ N , then Equation (7)

can be written as

G0 − (−A−−1)−1A−−k G0G
k−1
+ = (−A−−1)−1

(
A−+

0 +

N∑
i=1

A−+
i Gi+

)
.

9

This is a Sylvester matrix equation [9, 8] of the type AXB +X = C, which can be solved in

O((m− r)3) time with the Hessenberg-Schur method proposed in [9].

The second case arises when the matrices (A−−i)Ni=2 can be written as the product of a

scalar and a common matrix, i.e., A−−i = ciK, for 2 ≤ i ≤ N . As highlighted in Remark 1,

this structure arises, for instance, in the batch queues introduced in Section 4. Using this

assumption we can rewrite Equation (7) as

G0 − (−A−−1)−1KG0

N∑
i=2

ciG
i−1
+ = (−A−−1)−1

(
A−+

0 +
N∑
i=1

A−+
i Gi+

)
. (12)

This is also a Sylvester matrix equation of the type AXB + X = C, with A = (A−−1)−1K

and B =
∑N

i=2 ciG
i−1
+ . It can therefore be solved with the Hessenberg-Schur method in [9].

In summary, our methodology to find G has three main steps: (i) compute the blocks

(Āi)
M
i=0, which takes O(MNrm2) time, (ii) solve Eq. (2) to obtain G+, which requires O(Mr3)

time per iteration, if computed with FI, and (iii) solve Eq. (7) to obtain G0, which can be

done in O((m− r)3r +Nr3 +N(m− r)2r2) time. On the other hand, solving the full-block-

size M/G/1-type MC with FI requires O(Nm3) time per iteration (let κ be the number of

iterations required by FI for this chain). Therefore, the cost of step (i) is approximately Mr/m

times that of a single iteration of FI on the full-block-size M/G/1-type MC. As a result, for

the total time of this step to be similar to that of FI on the full-block-size M/G/1-type MC,

the number of blocks of the censored process M would need to be on the order of κm/r,

which is a very large number, since m is already assumed to be large and FI may require a

large number of iterations [14]. Also, the cost per iteration of step (ii) is almost negligible

compared to the cost per iteration of FI applied to the full-size M/G/1-type MC. Finally,

one iteration of FI on the full-size M/G/1-type MC has a time complexity comparable to the

last step of our method. All in all, we expect that our method should provide a significant

reduction in the time to compute G, compared to FI, especially when the ratio m/r is large,

and the number of blocks M is small compared to κm/r. A similar conclusion can be drawn

if CR is used to solve the full-block-size M/G/1-type MC, although in this case the analysis is

more involved since the time complexity per iteration is O(d′m3 +m2d′ log d′), where d′ varies

at every iteration, as explained above [3]. In Section 4 we will show numerically how the use

of our methodology leads to significant reductions in the time to compute G, compared to

either CR or FI on the full-block-size M/G/1-type MC.

3 Computing the stationary probability vector

We have shown how the matrix G can be obtained by first computing G+ from a censored

process and then solving a linear system to determine G0. Once G has been obtained the

10

stationary probability vector of the original M/G/1-type MC can be computed by means of

Ramaswami’s formula [22], as follows. Let the matrices (Ãi)i≥1 and (B̃i)i≥0 be defined as

Ãi =
∞∑
j=i

AjG
j−i, i ≥ 1, B̃i =

∞∑
j=i

BjG
j−i, i ≥ 1, B̃0 = B0 + B̃1(−Ã1)−1C0. (13)

Let π be the stationary probability vector of the MC with generator Q, i.e., the vector

such that πQ = 0 and π1 = 1. This vector can also be partitioned according to the levels

as π = [π0, π1, . . .]. Then, Ramaswami’s formula states that the vectors πi can be found

recursively as

πi =

π0B̃i +
i−1∑
j=1

πjÃi−j+1

 (−Ã1)−1, i ≥ 1, (14)

and π0 is such that

π0B̃0 = 0, π0κ = 1, (15)

where κ = 1+
(∑∞

j=1 B̃j

)(
−
∑∞

j=1 Ãj

)−1
1. However, one may wonder whether the structure

of the matrix A0 can be exploited to make the computation of π faster. This is the purpose

of this section, where three main approaches to compute π are described. The first method

makes use of the structure of A0 to accelerate the computation of the matrices (Ãi)
N
i=1 and

(B̃i)
N
i=1. The other two methods compute the vector π from the stationary probability vector

of the censored process. While the first two methods apply in general to any M/G/1-type

MC with restricted transitions, the last one also exploits the additional structure discussed

in Remark 1.

3.1 Computing π from the original process

In this section we consider the problem of exploiting the structure of A0 to compute the

matrices (Ãi)
N
i=1 and (B̃i)

N
i=1. To compute these matrices one typically starts with ÃN = AN

and B̃N = BN , and computes iteratively Ãi = Ai + Ãi+1G and B̃i = Bi + B̃i+1G, for

i = N − 1, . . . , 1. However, if we rewrite Equation (13) in block form according to the

partition in (3), we find that

Ãi =

[
Ã++
i Ã+−

i

Ã−+
i Ã−−i

]
=

[
A++
i A+−

i

A−+
i A−−i

]
+

N∑
j=i+1

[
A++
j A+−

j

A−+
j A−−j

][
G+ 0

G0 0

]j−i

=

[
A++
i A+−

i

A−+
i A−−i

]
+

N∑
j=i+1

[
A++
j Gj−i+ +A+−

j G0G
j−i−1
+ 0

A−+
j Gj−i+ +A−−j G0G

j−i−1
+ 0

]
, 1 ≤ i ≤ N.

11

Therefore, the last m− r columns of the matrix Ãi are identical to those of the matrix Ai, for

1 ≤ i ≤ N . To compute the first r columns of these matrices we simply start with Ã++
N = A++

N

and Ã−+
N = A−+

N and then iteratively compute

Ã++
i = A++

i + Ã++
i+1G+ +A+−

i+1G0,

Ã−+
i = A−+

i + Ã−+
i+1G+ +A−−i+1G0,

for i = N − 1, . . . , 1. A similar observation can be made for the matrices (B̃i)
N
i=1 since these,

as well as (Bi)
N
i=1, can be partitioned in two blocks depending on whether the transitions

from level zero take the chain to a state with phase in S+ or S−. Therefore, we can write

B̃i =
[
B̃+
i B̃−i

]
=
[
B+
i B−i

]
+

N∑
j=i+1

[
B+
j B−j

] [G+ 0

G0 0

]j−i
.

From this equation we find that B̃−i = B−i , for 1 ≤ i ≤ N . Also, B̃+
i can be obtained

by starting with B̃+
N = B+

N , and sequentially computing B̃+
i = B+

i + B̃+
i+1G+ + B−i+1G0,

for i = N − 1, . . . , 1. Once we have obtained these matrices, we can compute the vector π

directly using Ramaswami’s formula as in Equation (14). One could also rely on the fast-

Fourier-transform-based implementation of Ramaswami’s formula proposed by Meini [16].

With either approach, we are computing π by simply using the structure of G to speed up the

computation of the matrices (Ãi)
N
i=1 and (B̃i)

N
i=1. In the next section we consider a different

approach in which we make use of the censored process to obtain the stationary probability

vector π.

3.2 Computing π from the censored process

In this section we show how the censored process can be used to reduce the time required

to compute π by separately computing (π+
i)i≥1 and (π−i)i≥1, where these vectors arise by

partitioning πi according to S+ and S−, i.e., πi = [π+
i π−i], for i ≥ 1. As stated before, we

obtain the matrix G+ from a censored process of the M/G/1-type whose G matrix is actually

equal to G+. To do so, we described the censored process by means of the blocks (Āi)
M
i=0,

which only consider the behavior of the process away from the boundary. We now complete

the description of this process by adding a boundary level, which is identical to the boundary

level of the original process. This means that the new process is built by observing the original

process only when it is in the subset of states
⋃
i≥1{(i, j), j ∈ S+} ∪ {(0, j), 1 ≤ j ≤ mb}.

The boundary behavior of this process is described by the mb ×mb matrix B̄0 (transitions

within level 0), the mb × r matrices (B̄i)
M0
i=1 (transitions from level zero to level i > 1) and

the r ×mb matrix C̄0 (transitions from level 1 to level 0). These blocks, together with the

12

matrices (Āi)
M
i=0, completely characterize the censored process, whose generator Q̄ is built

from these blocks in a similar manner as the generator Q of the original process in (1).

To define the blocks (B̄i)
M0
i=0 we rely on the matrices (Wi)i≥−1 as defined in (6). As stated

in the previous section, we partition the original blocks Bi = [B+
i B

−
i], where B+

i (resp. B−i)

holds the transition rates that, from level zero, trigger the chain into level i and phase in

S+ (resp. S−). Similarly, the matrix C0 can be partitioned into C+
0 and C−0 , which hold the

transition rates to level zero from states in level one and phase in S+ and S−, respectively.

Using these definitions we find that B̄0 = B0 + B−1 (−A−−1)−1C−0 , which considers the two

alternative paths for a transition starting and ending in level zero in the new process. This

may occur directly according to B0 or by a transition to level one and a backward transition,

avoiding states with phase in S+. Carrying out a similar analysis we find that the remaining

boundary blocks are given by

B̄i =


B+
i +

∑i+1
j=1B

−
j Wi−j , 1 ≤ i ≤ N − 1,

B+
N +

∑N
j=1B

−
j WN−j , i = N,∑N

j=1B
−
j Wi−j , i ≥ N + 1.

(16)

These matrices are computed sequentially from i = 0 to M0, where M0 is the smallest positive

integer such that
∑M0

i=0 B̄i1 > −ε1. Finally, we observe that the transitions from level one to

level zero in the censored process are governed by C̄0 = C+
0 +A+−

1 (−A−−1)−1C−0 .

With these definitions we are ready to compute, using Ramaswami’s formula, the sta-

tionary probability vector of the censored process π̄, which can be partitioned in blocks as

π̄ = [π̄0, π̄1, π̄2, . . .]. The importance of this vector is that it is proportional to the stationary

vector π of the original process [13, 14], i.e., π̄0 ∝ π0 and π̄i ∝ π+
i , for i ≥ 1. Actually,

we would like to normalize the vector π̄ by a constant such that π̄0 = π0 and π̄i = π+
i , for

i ≥ 1. This can be accomplished by computing π0 as in Equation (15) and assigning π̄0 = π0.

This forces π̄0 to be normalized by the appropriate constant. The terms (π̄i)i≥1 can then be

obtained, using Ramaswami’s formula, after computing the matrices (˜̄Ai)i≥1 and (˜̄Bi)i≥1 for

the censored process, as in Equation (13). Notice that, to obtain π0 from Equation (15), we

first need to compute the matrices (Ãi)
N
i=1 and (B̃i)

N
i=1.

Up to this point, we have computed π0 and (π+
i)i≥1, and we can use these to find the

vectors (π−i)i≥1 in order to completely determine π. This can be done by rewriting Equation

(14) in block form as

[
π+
i π−i

] [−Ã++
1 −Ã+−

1

−Ã−+
1 −Ã−−1

]
= π0

[
B̃+
i B̃−i

]
+

i−1∑
j=1

[
π+
j π−j

] [Ã++
i−j+1 Ã+−

i−j+1

Ã−+
i−j+1 Ã−−i−j+1

]
, i ≥ 1.

13

From this equation we can express π−i as

π−i =

π0B
−
i + π+

i A
+−
1 +

i−1∑
j=1

(
π+
j A

+−
i−j+1 + π−j A

−−
i−j+1

) (−A−−1)−1, i ≥ 1. (17)

Notice that this equation makes use of the original blocks {Ai}i≥1 and {Bi}i≥1 instead of the

blocks {Ãi}i≥1 and {B̃i}i≥1 since their last m− r columns are identical, as shown in Section

3.1. Using this equation we can compute π−i in terms of π0, (π+
j)ij=1 and (π−j)i−1

j=1, for i ≥ 1,

thus concluding the computation of π. This approach is summarized in Algorithm 1. One

may consider a slight modification to this algorithm by replacing the use of Ramaswami’s

formula in step 7 with the Fast Ramaswami’s Formula (FRF) proposed in [16], which is based

on the fast Fourier transform. This may provide an important computational gain when the

number of blocks (B̄i)i≥1 and (Āi)i≥1 is large. This approach will also be considered in the

numerical experiments in Section 4.

Algorithm 1 Computing π from the censored process

Input: Matrices (Āi)i≥1 and G

1: Compute the matrices (Ãi)i≥1 and (B̃i)i≥0 using the iterative scheme in Section 3.1.

2: Find π0 solving Equation (15) and set π̄0 = π0.

3: Compute the matrices (B̄i)i≥0 according to Equation (16).

4: Compute the matrices (˜̄Ai)i≥1 and (˜̄Bi)i≥0 as in Equation (13).

5: Set σ = π̄01 and i = 1.

6: while σ < 1− ε do
7: Compute π̄i using (Fast) Ramaswami’s formula.

8: Set π+
i = π̄i and compute π−i as in Equation (17).

9: Update σ = σ + π+
i 1 + π−i 1, and i = i+ 1.

10: end while

3.3 Computing π from the censored process: a special case

In this section we consider how to exploit the additional structure described in Remark 1,

which arises in the MCs that describe the batch queues to be introduced in Section 4. Recall

that this additional structure implies that: first, the matrices (A−−i)Ni=2 can be written as the

product of a scalar and a common matrix, i.e., A−−i = ciK, for 2 ≤ i ≤ N ; second, the blocks

(A+−
i)Ni=2 and (A−+

i)Ni=2 are equal to zero. We start by noting that, due to the additional

structure, Equation (17) can be written as

π−i =

π0B
−
i + π+

i A
+−
1 +

 i−1∑
j=1

ci−j+1π
−
j

K

 (−A−−1)−1, i ≥ 1. (18)

14

The advantage of this expression is that each term of the sum is just a vector multiplied by a

scalar, while in the general case each term in the sum requires a vector-matrix multiplication.

Therefore, one can simply modify step 8 in Algorithm 1 replacing the use of Equation (17)

by Equation (18). However there is an additional fact that can be exploited if we make use of

the FRF to compute (π+
i)i≥1. The FRF, as introduced in [16], computes not one but many

vectors π+
i at a time. Specifically, in each iteration the FRF computes M̄ terms, where M̄ is

a power of two such that M̄ ≥M and M̄ ≥M0. Therefore, after the first iteration we already

have the terms (π+
i)M̄i=1 and it suffices to compute the corresponding terms (π−i)M̄i=1. If the

MC has the structure described in Remark 1 we could do this by using Equation (18) directly.

But we can also use the following observation. Let us assume that we have computed the

first (π−i)Ni=1 by means of (18). For i ≥ N + 1, we can write

π−i =

π+
i A

+−
1 +

i−1∑
j=i−N+1

(
ci−j+1π

−
j

)
K

 (−A−−1)−1,

as Bi = 0 and Ai = 0 for i > N . Now, if we focus on the computation of (π−i)2N−1
i=N+1 we can

write the previous expression as

π−i = π+
i Â

+−
1 +

N∑
j=i−N+1

(
ci−j+1π

−
j

)
K̂ +

i−1∑
j=N+1

(
ci−j+1π

−
j

)
K̂, N + 1 ≤ i ≤ 2N − 1, (19)

where Â+−
1 = A+−

1 (−A−−1)−1 and K̂ = K(−A−−1)−1. In this equation the first sum on the

right-hand side only involves the terms (π−i)Ni=2, while the second sum and the left-hand side

involve the terms (π−i)2N−1
i=N+1. Therefore, we can write this expression as a system of equations.

To do so, let N̄ = N − 1 and let π̂+
i and π̂−i be

π̂+
i =


π+

1+(i−2)N̄+1

π+
1+(i−2)N̄+2

...

π+
1+(i−1)N̄

 and π̂−i =


π−

1+(i−2)N̄+1

π−
1+(i−2)N̄+2

...

π−
1+(i−1)N̄

 , i ≥ 2.

Therefore, we can write the set of N̄ equations in (19) in matrix form as

π̂−3 = π̂+
3 Â

+−
1 +R1π̂

−
2 K̂ +R2π̂

−
3 K̂,

where the N̄ × N̄ matrices R1 and R2 are given by

R1 =


cN cN−1 . . . c2

0 cN . . . c3

...
...

. . .
...

0 0 . . . cN

 and R2 =



0 0 . . . 0 0

c2 0 . . . 0 0

c3 c2 . . . 0 0
...

...
. . .

...
...

cN−1 cN−2 . . . c2 0


.

15

In general, we can find the vector π̂−i in terms of π̂−i−1 and π̂+
i by solving the system

π̂−i −R2π̂
−
i K̂ = π̂+

i Â
+−
1 +R1π̂

−
i−1K̂, i ≥ 3. (20)

This is also a Sylvester matrix equation of the type AXB + X = C, that can be solved

using the Hessenberg-Schur method mentioned before [9]. Among the two decompositions

that must be carried out to use this method, the Schur decomposition is the most expensive,

requiring 10b3 operations for a square matrix of size b. On the other hand, the Hessenberg

decomposition only requires 5
3b

3 operations [9]. In this case the square matrix A = −R2

is of size N̄ , while the square matrix B = K̂ is of size m − r. Since we expect a large

value for m − r, it is actually better to apply this method to the transposed system, i.e., to

B′X ′A′ + X ′ = C ′. In this manner we apply the Hessenberg decomposition to the larger

matrix, i.e., to B′ = −K̂ ′. Additionally, since the matrix A′ = −R′2 is already in real Schur

form [10] (it is upper triangular), there is no need to use the QR algorithm to obtain the

Schur decomposition. Therefore, after finding the Hessenberg decomposition of B′ = −K̂ ′ we

can find the solution to the transposed Sylvester matrix equation by solving N̄ Hessenberg

systems of size m− r, each one requiring O((m− r)2) time. Moreover, to find all the vectors

(π̂−i)i≥3 we need to solve a series of equations as in (20), but the matrices R2 and K̂ remain

unchanged for i ≥ 3. Therefore, to solve these equations we only need to apply the Hessenberg

decomposition once and update the right-hand side of (20). This concludes the computation

of π. The next section illustrates the performance of the various methods introduced in this

paper by means of two queueing examples.

4 Examples and Numerical Experiments

The purpose of this section is to show how two different queueing systems can be modeled as

M/G/1-type MCs with restricted downward transitions. The first system is a BMAP/PH/1

queue, for which the block A0 is forced to have a few nonzero columns by using a slightly larger

representation of the service-time distribution. The second example is a BMAP[2]/PH[2]/1

preemptive priority queue with two types of customers where, by adequately ordering the

state space, we obtain the desired structure for the block A0. These two examples will be

used to illustrate the computational gains obtained with our approach. In addition, when the

batch sizes are i.i.d. random variables independent of the arrival process, the MCs used to

model these queues show the additional structure described in Remark 1. Therefore, these

examples will also be useful to demonstrate the gains obtained by exploiting this additional

structure.

We focus on the total time required to compute the vector π, which includes the computa-

tion of G. As a benchmark, we compute the matrix G of the original M/G/1-type MC using

16

the U-based Functional Iteration [19] and Cyclic Reduction [4], for which we use the labels FI

and CR, respectively. To compute π, after finding G, we consider Ramaswami’s formula (RF)

and its fast implementation (FRF). Therefore, for the total time to compute π we have four

benchmarks: FI-R, FI-F, CR-R and CR-F. For the BMAP[2]/PH[2]/1 preemptive priority

queue we also compare with the approach introduced in [25], here labeled INF, where both

the high- and the low-priority buffers are assumed to be infinite. The methods introduced

in this paper are labeled O, C and C*. In all the methods the censored process is used to

exploit the structure of the matrix A0 to compute G+. In the methods labeled O and C we

only consider this structure, while in C* we also take into account the additional structure

described in Remark 1. Therefore, in the methods O and C the matrix G0 is found by solv-

ing the linear system (7) for the general case. In the method O, the vector π is found from

the original process as described in Section 3.1. This can be done either with RF or FRF,

therefore we have both O-R and O-F. On the other hand, for the method C the vector π is

computed by means of the censored process as discussed in Section 3.2. In this case we also

have both C-R and C-F. In the method labeled C* we consider the additional structure in

Remark 1, and therefore the matrix G0 is found by solving Equation (12). Additionally, we

can compute π relying on the censored process and applying Equation (18). As this can be

done by using either RF or FRF to compute (π+
i)i≥1, we have the two alternatives C*-R and

C*-F. Moreover, if FRF is used to compute (π+
i)i≥1, we can also make use of Equation (20)

to obtain (π−i)i≥1. This approach will be labeled C*-F2.

Since both queueing systems have similar arrival processes and service-time distributions,

we devote the next section to describe these. Subsequently, we introduce both models and

show how the computation of π can be substantially reduced by exploiting the restricted-

transitions structure.

4.1 The arrival process and service-time distribution

In Kendall’s notation the two queues under analysis are the BMAP/PH/1 queue and the

BMAP[2]/PH[2]/1 preemptive priority queue. We first define the arrival processes (BMAP

and BMAP[2]) and then move on to specify the service time distributions (PH and PH[2]).

The arrival process at both queues can be described by means of a Markovian Arrival Process

(MAP) [15, 19]. A MAP(ma, D0, D1) is a point process driven by an underlying continuous-

time MC (CTMC) with ma × ma generator matrix D = D0 + D1. The (i, j)-th entry of

the matrix D1 holds the rate at which, when the underlying chain is in state i, a customer

arrives and the chain makes a transition to state j, for 1 ≤ i, j ≤ ma. The off-diagonal entries

of the matrix D0 hold the rates related to transitions without arrivals, and its (negative)

diagonal entries are such that D1 = 0, where 0 is a vector with all its entries equal to zero.

17

Therefore, this process results from a CTMC whose transitions are marked [12] with either

of two labels: the label ‘0’ for the transitions that generate no arrivals, and the label ‘1’ for

the transitions that trigger an arrival. The matrices D0 and D1 hold the rates associated

with the transitions labeled ‘0’ and ‘1’, respectively. These markings can be generalized

to include other information about the arriving customers. As we want to model queues

with batch arrivals, the markings can be defined to include the number of customers that

arrive in a single transition. In this case the arrival process is characterized by the ma ×ma

matrices {D0, D1, . . . DL̄}, where L̄ is the maximum batch size. The matrix Dj holds the

rates related to transitions of the underlying chain that trigger a batch arrival of size j, for

1 ≤ j ≤ L̄. Since in this case the markings are related to the batch size only, this process

is called a Batch Markovian Arrival Process (BMAP) [15]. This is the arrival process fed to

the BMAP/PH/1 queue. In general, this process is able to model correlation between the

inter-arrival times (IATs) and the batch size distribution. However, when modeling this queue

as an M/G/1-type MC with restricted transitions, there is a computational gain that can be

exploited by assuming that the the batch sizes are i.i.d. random variables and are independent

of the IATs (see Remark 1 and Section 2.2). To build a BMAP with these characteristics,

let rj be the probability that a batch is of size j, and let the batch IATs be described by a

MAP(ma, D0, D+). Then, the batch arrival process is a BMAP characterized by the ma×ma

matrices {D0, D1, . . . DL̄}, where Dj = rjD+, for 1 ≤ j ≤ L̄.

The arrivals at the preemptive priority queue also occur in batches, but these are of two

types, each one associated with a different priority level. Therefore, the markings must include

not only the size of the batch, but also the type of the customers in that batch. We assume that

each batch is made of customers of only one type, and the maximum size of a batch of high-

(resp. low-) priority customers is L̄1 (resp. L̄2). Hence, the arrival process can be modeled

as a BMAP[2] characterized by the matrices {D0, D
j1
1 , D

j2
2 , 1 ≤ j1 ≤ L̄1, 1 ≤ j2 ≤ L̄2},

where the notation BMAP[2] reflects the fact that the markings describe both the batch size

and the type of the customers in the batch (two possible types). In this case the matrix

Dj
1 (resp. Dj

2) holds the transition rates associated with the arrival of a batch of j high-

(resp. low-) priority customers, for 1 ≤ j ≤ L̄1 (resp. 1 ≤ j ≤ L̄2). As before, we can define a

version of this process where the batch sizes are i.i.d. random variables and are independent

of the IATs. For this purpose let pi be the probability that a batch of high-priority customers

is of size i, for 1 ≤ i ≤ L̄1. Accordingly, let qi be the probability that a batch of low-

priority customers is of size i, for 1 ≤ i ≤ L̄2. Also, let the batch IATs be described by

a MAP with markings for each customer type, i.e., characterized by the ma ×ma matrices

{D0, D1, D2}, where D1 (resp. D2) holds the transition rates at which the underlying chain

triggers the arrival of a batch of high- (resp. low-) priority customers. Combining the marked

18

MAP and the batch-size distributions we obtain a BMAP[2] characterized by the ma ×ma

matrices {D0, D
j1
1 , D

j2
2 , 1 ≤ j1 ≤ L̄1, 1 ≤ j2 ≤ L̄2}, where Dj1

1 = pj1D1 and Dj2
2 = qj2D2,

for 1 ≤ j1 ≤ L̄1 and 1 ≤ j2 ≤ L̄2. Notice that, although the batch sizes are i.i.d. random

variables, the IATs of both types of batch arrivals can be correlated. As with the previous

queue, the independence between the IATs and the i.i.d. batch sizes can be exploited when

the BMAP[2]/PH[2]/1 preemptive priority queue is modeled as an M/G/1-type MC with

restricted downward transitions.

In the BMAP/PH/1 queue, the service times follow a Phase-Type (PH) distribution [14,

18] with parameters (ms, α, T). A PH distribution describes the time until absorption in a

CTMC with ms transient states and one absorbing state. The initial probability distribution

on the transient states is given by the 1 × ms vector α, and the transitions between the

transient states are ruled by the ms ×ms transient generator T . The (i, j)-th entry of this

matrix holds the non-negative rate at which a transition from state i to state j occurs, with

i 6= j. The diagonal entries are negative and such that the matrix T has non-positive row

sum, with at least one row having a strictly negative row-sum. The absorption rate at state

i is therefore given by the i-th entry of the vector t = −T1, for 1 ≤ i ≤ ms. The cumulative

distribution function of the time until absorption is given by F (x) = 1 − α exp(Tx)1, for

x ≥ 0. Similarly, the service times in the preemptive priority queue for both the high- and

the low-priority customers are PH-distributed. For the high- (resp. low-) priority customers

the parameters of the service-time distribution are (m1, α, T) (resp. (m2, β, S)). The fact

that these parameters may differ for each customer type is made explicit by writing PH[2].

In the remainder of the paper the states of the MCs that underlie the arrival process and the

service-time distribution are also referred to as phases.

4.2 The BMAP/PH/1 queue

Our first example is a single-server queue where the customers arrive according to a BMAP

characterized by the ma × ma matrices {D0, D1, . . . DL̄}, with L̄ the maximum batch size.

The service times follow a PH distribution with parameters (ms, α, T). The BMAP/PH/1

queue can be modeled as an M/G/1-type MC by choosing the number of customers in the

queue to be the level. This selection assures that the level decreases by at most one in a

single transition, since only one service completion can occur at a time. On the other hand

the level can increase by up to L̄ as it is triggered by a batch arrival. Let N(t) be the number

of customers in the queue at time t, S(t) the phase of the service process at time t if there

is a customer in service, and J(t) the phase of the arrival process at time t. Then, the tuple

{N(t), S(t), J(t), t ≥ 0} forms a CTMC that fully describes the state of the BMAP/PH/1

queue. The state space of this MC can be described as follows: the level zero is the set of states

19

Ω0 = {(0, j), 1 ≤ j ≤ ma}, where in state (0, j) the queue is empty and the arrival process is

in phase j; the level k ≥ 1 is the set of states Ωk = {(k, i, j), 1 ≤ i ≤ ms, 1 ≤ j ≤ ma}, where

in state (k, i, j) there are k customers in the queue, the service in progress is in phase i and

the arrival process is in phase j. The complete state space is therefore given by Ω =
⋃
k≥0 Ωk.

Since this MC is of the M/G/1 type, its rate matrix has the structure in (1) with blocks given

by

A0 = tα⊗ Ima , A1 = T ⊕D0, Aj+1 = Ims ⊗Dj , j = 1, . . . , L̄, (21)

where t = −T1, and In is the identity matrix of size n. Here ⊗ and ⊕ stand for Kronecker

product and sum [10], respectively. From this definition it is clear that the block size is

m = msma, and that the number of nonzero columns in A0 depends on the number of nonzero

elements in the vector α. In fact, if α has only one nonzero element, then A0 has only r = ma

nonzero columns, i.e., the block size is ms times larger than the number of nonzero columns

in A0. This is the case if the service times are described by an Acyclic PH distribution [6].

This class of distributions (which includes the Erlang and the hyper-exponential distributions

as special cases) has a canonical form introduced in [6] where all the mass of the initial

probability vector is concentrated in the first phase. Therefore, in this case the vector α has

only one nonzero entry and the matrix A0 has ma nonzero columns. In general, the vector

α may have any number of nonzero entries, but we can always find a representation of size

ms + 1 such that the initial probability vector has only one nonzero entry. In fact, it is not

difficult to show [20] that any continuous PH distribution with representation (ms, α, T) also

has a representation (ms + 1, e1, T̄), where e1 and T̄ are given by

e1 = [1 0ms] and T̄ =

[
−θ θαP

0 T

]
,

where θ is the diagonal entry of T of largest absolute value, i.e., θ = max{|Tii|, 1 ≤ i ≤ ms},
and P is the uniformized version of the subgenerator matrix T , i.e., P = 1

θT + I. Using this

result we can replace α and T by e1 and T̄ , respectively, in Equation (21). As a consequence

the block A0 has only ma nonzero columns, and the new block size is (ms + 1)ma. If ms

is large, the structure of the block A0 can be exploited to speed-up the computation of the

matrix G and the stationary probability vector of the chain.

To illustrate the behavior of our methods we choose the following PH distribution for

the service time: we assume that the total service time is made up of a random number

of i.i.d. elementary operations; each of these operations is described by a continuous PH

distribution with parameters (m̄s, γ, C); the number of elementary operations that make up

the total service time is described by a discrete PH distribution with parameters (ns, β, S); as

20

a result [14], the total service time is a continuous PH distribution with parameters (ms, α, T)

given by ms = nsm̄s, α = γ ⊗ β, and T = C ⊗ I + cγ ⊗ S, where c = −Ce. Notice that

we can easily alter the size of this representation by changing ns, the size of the discrete PH

distribution. Also, this representation is not acyclic, but we can obtain a representation of

size ms + 1 where the initial probability vector has only one nonzero entry, as mentioned

above.

The time to complete an elementary operation is assumed to have mean one and squared

coefficient of variation (SCV) equal to two. The moments are matched with a PH distri-

bution of size m̄s = 2 using the method in [24]. Hence, the service time distribution has a

representation of size 2ns, which we convert into a representation of size 2ns + 1 to induce

the block A0 to have ma nonzero columns. The number of elementary service operations is

assumed to be uniformly distributed between one and ns. Therefore the mean service time

is equal to (ns + 1)/2, which is therefore fixed when ns is specified. In addition to quantify

the effect of ns (the block size) on the computation times, we also consider the effect of the

load. For this queue the load is given by ρ = λE[L]/µ, where λ is the mean arrival rate

(inverse of the mean IAT), µ is the mean service rate (inverse of the mean service time), and

E[L] is the mean batch size. We set the batch size distribution to be uniform between one

and L̄, hence E[L] = (L̄ + 1)/2. As µ and E[L] are fixed by specifying the values of ns and

L̄, we use the rate λ to match a determined load ρ. The arrival process is thus assumed to

have rate λ = ρµ/E[L], SCV equal to 5, and decay rate of the autocorrelation function of the

sequence of IATs equal to 0.5. These characteristics are matched with a MAP(ma, D0, D+)

of order ma = 2 with the method introduced in [7]. The matrices {D1, . . . , DL̄} are obtained

as Dj = rjD+, for 1 ≤ j ≤ L̄, where rj = 1/L̄ is the probability that a batch is of size j.

Since ma = 2, the block size of the original chain is 4ns and the number of nonzero columns

in A0 is only two.

In the first scenario we set both the maximum batch size L̄ and the maximum number

of elementary service operations ns equal to 10. The results for different values of the load

are shown in Table 1. In this case the use of the FRF provides an important gain for all

the methods. However, compared to the CR-R method, the reduction that can be achieved

by using the O-R method is significantly larger than the one that can be obtained by using

the CR-F method. Compared to CR-R we see that O-R provides an important gain

for all the load values considered, while it provides slightly better results than FI-R. Also,

the performance of C-R and C*-R is actually worse than the simpler O-R, with a larger

difference for higher loads. In fact, O-R is the best method among those that do not consider

the structure in Remark 1. We will comment more on this later on, after presenting the results

for other scenarios. The best method is C*-F2, which outperforms all the other methods for

21

every value of the load considered, except ρ = 0.1. These results show that even for ns = 10

(the ratio m/r is 2ns) the methods introduced in this paper are able to reduce the times to

compute the vector π.

We now consider a scenario where the computation times become considerably larger due

to an increase in the block size, as this is the case where we expect our methods to provide

more important gains. For the results shown in Table 2 we take the previous scenario and

simply increase the value of ns to 50. This makes the block size equal to 200, while the

number of nonzero columns in A0 remains equal to two. In this case we notice that the use

of the FRF no longer provides a gain for the CR, FI nor O methods. This is related to

the increase in the block size, since the computational cost of the FRF is more sensitive to

the block size than the RF [16]. On the other hand, we see how the O-R method shows a

dramatical reduction in computation times, especially under low and mid loads. In this case,

the C*-R method provides further improvements although this reduction is rather limited

for high loads. Even the use of C*-F does not provide a substantial reduction under high

loads, compared to C-R. The only method that is able to show a significant reduction for

ρ = 0.9, compared to O-R, is C*-F2, which again outperforms all the other methods. Here,

as well as in the previous case and for most of the load values considered, we find that the

C approach is not able to reduce the times obtained with the O method. In this scenario

we also observe important absolute differences: for a load of 50%, CR-R takes more than 3

minutes, FI-R requires around 15 seconds, while O-R performs this computation in just one

second. Also, for a load of 90% the computation of π with CR-R and FI-R takes more that

6 and 3 minutes, respectively, while the O-R requires less than a minute, and the C*-F2

takes around 10 seconds.

As a final scenario we consider an increase in the maximum batch size, making L̄ equal to

20, while the other parameters are kept as in the previous scenario. The results are shown in

Table 3, where the first obvious observation is that all the methods require longer computation

times than in the previous scenario. Although there is a small increase in the time to compute

the matrix G, the difference between these scenarios is mostly due to the significantly longer

times required to compute π. In this case, the number of blocks L̄ and the number of terms

πi are larger, but the block size is the same as in the previous case. Therefore, the FRF-based

methods, compared to their RF-based counterparts, show a relative better performance than

before. However, for the CR, FI and O approaches the use of the FRF only provides a

computational gain when the load is 0.9. On the other hand, the use of the FRF under the

C and C* approaches results in reductions for almost all the load values considered. Here

again, the O-R method provides a significant reduction in computation time compared to

either CR-R or FI-R. Also, the C*-F2 method is able to significantly reduce the computation

22

times for high loads, outperforming the other approaches once more. We also notice that, in

this case, the C-R and the O-R methods show a similar performance, except when the load

is very high (0.9). If we consider their FRF versions, we find that C-F is always better than

O-F and, moreover, C-F is the best among the O and the C approaches. This is in contrast

with the previous results, where O-R was typically the best performing among these four

methods.

4.3 The BMAP[2]/PH[2]/1 preemptive priority queue

We now illustrate how the BMAP[2]/PH[2]/1 preemptive priority queue can be modeled as an

M/G/1-type MC with restricted downward transitions. In this queue the arrivals also occur

in batches and there are two types of customers, each one associated with a different priority

level. We assume that each batch is made of customers of only one type, and the maximum

size of a batch of high- (resp. low-) priority customers is L̄1 (resp. L̄2). Hence the arrival

process can be modeled as a BMAP[2] characterized by the matrices {D0, D
j1
1 , D

j2
2 , 1 ≤ j1 ≤

L̄1, 1 ≤ j2 ≤ L̄2}. As mentioned in Section 4.1, we can define a version of this process where

the batch sizes are i.i.d. random variables and are independent of the IATs. Also, the service

times for both the high- and the low-priority customers are PH-distributed. For the high-

(resp. low-) priority customers the parameters of the service-time distribution are (m1, α, T)

(resp. (m2, β, S)).

To model this priority queue as an M/G/1-type MC the level variable must be chosen

such that during a single transition it can decrease by at most one. Therefore, one may take

the level either as the number of high- or low-priority customers, since in both cases the level

can only decrease by one (service completion) in a single transition, but it can increase by

up to L̄1 or L̄2 (batch arrivals). In previous works [1, 17, 25] the number of high-priority

customers has been used as the level. This choice induces a structure that can be exploited

when both priority classes are assumed to have an infinite buffer. However, under BMAP

arrivals, this approach requires the determination of L̄1 infinite block-matrices, which is done

with a linearly-convergent algorithm [25] that may require extremely long computation times.

Here we opt for the second alternative, that is to take the number of low-priority customers

as the level. We further assume that the high-priority customers have a finite buffer of size

C. This approach induces a completely different structure (restricted downward transitions),

which can be exploited to obtain the stationary probability vector of the MC in an efficient

manner for moderate values of C, e.g., 50 or 100. The assumption of a finite high-priority

queue (of moderate size) does not necessarily limit the applicability of the model since high-

priority queues are typically fairly short as opposed to low-priority queues. Hence, there is

little difference between having a, sufficiently large, finite or an infinite high-priority buffer.

23

Since the number of low-priority customers is chosen to be the level, the phase keeps

track of the number of high-priority customers, and the state of the arrival and the service

processes. Let N1(t) and N2(t) be the number of high- and low-priority customers in the

system at time t, respectively. Also, let J(t) be the state of the arrival process at time t,

which takes values in the set {1, . . . ,ma}. Let S1(t) (resp. S2(t)) be the phase of the high-

(resp. low-) priority service at time t when there is a customer of this class being served.

When a low-priority customer is in service there is no need to keep track of S1(t). However,

when a high-priority customer is being served, S2(t) keeps track of the phase at which the

first low-priority customer in the queue will (re-)start its service. Then, when a low-priority

customer is preempted by the arrival of a high-priority one, the service phase of the preempted

customer is kept in S2(t) such that its service can be resumed from this phase. The queue is

therefore described by the CTMC X(t) = {(N2(t), N1(t), J(t), S2(t), S1(t)) , t ≥ 0}. Its state

space is ordered lexicographically and is described as follows. In level zero there is no need

to keep track of S2(t) since there are no low-priority customers in the system. The states

in this level are subdivided in two subsets: the first considers the case where there are no

high-priority customers either (N1(t) = 0), so it is enough to keep track of the phase of the

arrival process. This case is covered by the set of states ∆00 = {j, 1 ≤ j ≤ ma}. The second

subset is ∆0+ = {(i, j, s1), 1 ≤ i ≤ C, 1 ≤ j ≤ ma, 1 ≤ s1 ≤ m1}, which considers the case

where there are i > 0 high-priority customers, i.e., the server is busy with a customer of

this type, and the service phase is s1. Therefore, the set of states corresponding to level

zero is ∆0 = ∆00 ∪ ∆0+. For every level k ≥ 1 there are also two subsets. The first is

∆+0 = {(j, s2), 1 ≤ j ≤ ma, 1 ≤ s2 ≤ m2}, which describes the case where there are no

high-priority customers and the server is busy with a low-priority one. The second subset

of level k ≥ 1 is ∆++ = {(i, j, s2, s1), 1 ≤ i ≤ C, 1 ≤ j ≤ ma, 1 ≤ s2 ≤ m2, 1 ≤ s1 ≤ m1},
which considers the general case with k ≥ 1 low-priority and i ≥ 1 high-priority customers,

the arrival process is in phase j, the service of the high-priority customer is in phase s1, and

the next low-priority customer to be served will start (or resume) in phase s2. The set of

states in level k ≥ 1 is given by ∆k = (k,∆+0 ∪∆++) and the full state space of the MC is

∆ =
⋃
k≥0 ∆k.

The complete description of the blocks that characterize the M/G/1-type MC of the

BMAP[2]/PH[2]/1 priority queue can be found in Appendix A. Of particular importance,

however, is the block A0, which holds the transition rates from level k to level k − 1. These

transitions are triggered by the completion of a low-priority service, which can only occur in

24

the absence of high-priority customers. Therefore, the block A0 is given by

A0 =


Ima ⊗ sβ 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 .

Only the first mam2 columns of this matrix are different from zero, and this number is

relatively small compared to the complete block size m = mam2 + C(mam2m1). In other

words, the block size is (1 + Cm1) times larger than the number of nonzero columns in A0.

Therefore, by modeling the priority queue in this manner we induce the restricted-downward-

transitions structure. In addition, if the batch-sizes are i.i.d. random variables independent of

the arrival process we have that Di
2 = qiD2. Then, by looking at the blocks (Ai)i≥2 described

in Equation (22), we find that A−−i+1 = qi (IC ⊗D2 ⊗ Im2m1), for 1 ≤ i ≤ L̄2. Moreover,

from Equation (22) we also find that (A+−
i)L̄2

i=2 and (A−+
i)L̄2

i=2 are zero. Therefore, these

blocks have the structure defined in Remark 1, which can be exploited together with the

restricted-transitions structure as described in Section 3.3.

We now consider some numerical instances of the BMAP[2]/PH[2]/1 preemptive priority

queue to illustrate the performance of the methods introduced in this paper. As before,

one of the main parameters of this queue is the load ρ, which in this case is given by ρ =

λ1E[L1]/µ1 + λ2E[L2]/µ2. For customers of type i, λi is their mean arrival rate, µi is their

mean service rate, and E[Li] is their mean batch size, for 1 ≤ i ≤ 2. Recall that high-

(resp. low-) priority customers are referred to as customers of type one (resp. two). We

assume that high- and low-priority customers have the same mean service rate equal to one,

i.e., µ1 = µ2 = 1. Also, both service-time distributions have SCV equal to two. We can

match these two moments with a PH distribution of order 2 by using the method in [24].

The batch-size distribution is assumed to be the same for both customer types. Specifically,

we set L̄1 = L̄2 = L̄, and let the batch size of both types be uniformly distributed between

one and L̄, with mean E[L]. Here we first build a single arrival process with arrival rate

λ = λ1 +λ2. With the assumptions stated above this arrival rate is given by λ = ρ/E[L]. We

assume that the SCV of the batch IAT distribution is equal to five and the decay rate of the

autocorrelation function of the sequence of batch IATs is 0.5. We use the method in [7] to

match the first two moments of the IAT distribution and the decay rate of the autocorrelation

function with an order-2 MAP. The resulting process is a MAP characterized by the 2 × 2

matrices D0 and D+, that describe the batch IATs irrespective of their type. The matrices

D1 and D2 are obtained as Dj = vjD+, for 1 ≤ j ≤ 2, where v1 + v2 = 1. In this scenario we

also assume that both customer types have the same arrival rate (v1 = v2 = 0.5). As the size

25

of the MAP is ma = 2 and the size of the PH representation of the service-time distributions

is m1 = m2 = 2, the number of nonzero columns is r = 4 and the block size of the original

M/G/1-type MC is m = 4 + 8C.

For the results in Table 4 we set the maximum batch size equal to five and the size of the

high priority buffer equal to 20. Even this buffer size causes very few losses as illustrated by

the loss rate (LR) of high-priority customers included in the last column of the table. The

results for the general techniques with FRF (CR-F and FI-F) are not included in this nor the

following tables, because their results were always worse that their RF counterparts due to the

large block size. Here we observe how the use of the censored process to compute π reduces

the computation times significantly compared with simply solving the original M/G/1-type

MC. Moreover, we see that the main gain is obtained due to the fast computation of G, and

additional gains can be realized by using the censored process to compute π, although only

when the additional structure from Remark 1 is exploited. Recall that only the C* methods

take advantage of this additional structure. Specifically, the use of O-R provides a significant

reduction compared to either CR-R or FI-R. We also observe that C-R requires more time

than O-R, while C-F shows similar times than O-R, and C*-R performs worse than O-R

for high loads. In fact, we have noted that in many cases, as in the previous section, the gain

obtained by using C*-R instead of O-R decreases as the load increases. The reason for this

behavior is that to compute π+ in C*-R we use Equation (14) with the blocks of the censored

process, but the number of blocks increases with the load. For instance, in this scenario for

loads 0.1, 0.5 and 0.9, the number of blocks (Āi)i≥0 is 45, 199 and 552, respectively. This effect

is reduced when the ratio m/r becomes large (e.g., 50), since in this case the vector-matrix

multiplications of the original blocks become very expensive. Therefore, the censored process

has the drawback of having many blocks, requiring many vector-matrix multiplications to

compute the sum in (14). However, when the number of blocks and the number of terms in

the vector π are large, and the block size is small, the FRF is expected to perform significantly

better than the customary RF [16]. This is the case for the censored process when the load is

high, and we therefore observe important gains when using C-F instead of C-R, and C*-F

or C*-F2 instead of C*-R.

We now consider a simple modification on the previous scenario by increasing the buffer

size from 20 to 50. This makes the block size equal to 404. For this buffer size the method CR

fails to compute the matrix G due to lack of memory. At this point we must mention that all

the times shown here were obtained using a personal computer with a 2Ghz processor and 2GB

of RAM. Apart from the methods introduced in this paper, Table 5 shows the computation

times for the FI-R method and for the approach introduced in [25]. The difference between

INF and our methods is extremely large for moderate to large loads. It must be noted that

26

our methods do not scale easily with the size of the high-priority buffer C. If this parameter

is large, our methods would require a large amount of memory, while the INF method does

not suffer from this problem. However, if the buffer is not so large our methods provide huge

savings in computation time. For instance, Table 5 shows that, when the load is 0.9, the INF

approach takes more than two hours to compute π, FI-R takes more than 14 minutes, while

O-R requires 1.2 minutes, and C*-F2 takes only half a minute. Additionally, the loss rate

assuming a finite buffer is almost negligible, even for high loads. Among the methods that do

not use the extra structure introduced in Remark 1, the best choice is O-R, as the methods

based on the censored process require more time, partly due to the computation of the blocks

of the censored process.

In the next scenario we make the maximum batch size L̄ equal to 15, such that both the

original and the censored M/G/1-type MCs have more blocks. The computation times are

shown in Table 6. Comparing with the results in Table 5, we see that all the methods require

more time to compute π, but the increase is not proportional. Actually, the INF method

takes more than ten times longer in the new scenario, while the FI-R method doubles its

computation times. Among our methods, C*-F2 shows the best behavior for high loads,

roughly doubling the computation time compared to the previous scenario. We also observe

that for mid loads the difference among the C* methods is negligible, but for high loads the

advantage of using C*-F2 is large, even compared to C*-F. Here again O-R is the best

method among those that do not exploit the additional structure from Remark 1. Also, we

notice that, in this and the previous scenarios, the use of the FRF provides no gain for the

O method, as is to be expected given the large block size. For the other methods, the use of

the FRF provides a significant gain for mid-to-high loads, as in this case the FRF is applied

on the censored process, the size of which is by construction very small.

We conclude this section by looking at a scenario where the number of high-priority

customers is a small fraction of the total number of customers. This scenario may arise,

for instance, in a communication system where the high priority is assigned to a subset of

the customers such that this subset will experience a better quality of service. One way to

accomplish this is to assign high priority only to a small proportion of the customers. To

consider this we simply set v1 = 0.1, meaning that the high-priority customers represent

only 10 percent of the customers. In Table 7 we see that under this configuration the INF

approach has a better performance than in the previous scenario, where the proportions of

high- and low-priority customers were equal. This gain is due to the fact that, in this case, the

most expensive operation in all the methods is the actual computation of π, after obtaining

π0 and the set of R matrices (in the INF approach) or the matrix G (in our approach). Since

now there are relatively fewer high-priority customers in the system and the INF method

27

uses the number of these customers as the level, this method needs to compute fewer terms

of the vector π. On the other hand, our methods use the number of low-priority customers as

the level and therefore they now need to compute many more terms of π. In spite of this gain,

under high loads the O-R and C*-F2 methods are still around 10 and 100 times faster than

the INF approach, respectively. Compared to FI-R, O-R is between 4 and 10 times faster,

while C*-F2 is between 5 and 400 times faster. We also observe that, for loads up to 0.7, the

O-R method has the best performance among those that do not use the structure in Remark

1. However, for ρ = 0.9 the C-F method is able to outperform the O-R approach. As in this

case the proportion of high priority customers is smaller than in the previous scenario, the

loss rate is also smaller and becomes negligible.

In addition to the computation times, it is relevant to consider the behavior of the approach

introduced in this paper in terms of the residual error. Let the infinity norm of an n × m
matrix K be given by ||K||∞ = maxni=1

∑m
j=1Kij . Let Ĝ be the matrix that solves Equation

(2) obtained with FI, and let G̃ be the matrix found with the methods introduced in this

paper. Also, let π̂ be the vector obtained by applying RF on Ĝ, and let π̃ be the vector

obtained with any of the methods introduced here. We have computed the residual error for

G̃, defined as ∣∣∣∣∣
∣∣∣∣∣
N∑
i=0

AiG̃
i

∣∣∣∣∣
∣∣∣∣∣
∞

,

which gives a measure of the goodness of G̃ as a solution for Equation (2). For all the instances

considered in this paper, the residual error was always below ε = 10−14. We also computed the

differences ||Ĝ−G̃||∞ and ||π̂−π̃||∞, obtaining a similar result. This reveals the good behavior

of the approach proposed here, which is to be expected since the algorithms on which our

method relies (Cyclic Reduction, the Schur decomposition and the Hessenberg-Schur method

for the Sylvester equation) are numerically stable.

5 Conclusion

From the results in the previous section we can conclude that the methods proposed in this

paper provide an important tool to evaluate the performance of the BMAP/PH/1 queue and

the BMAP[2]/PH[2]/1 preemptive priority queue, since they are able to analyze rather large

systems in a fraction of the time required by other methods. In general we see that, by

exploiting the restricted-downward-transitions property, we are able to reduce the total time

to compute π. The gains depend not only on the ratio m/r, but also on the parameters of

the system, and how these affect the expected sojourn times in S−, compared to those in

28

S+. However, we have seen in the previous examples that our methods are able to provide

significant gains in computation time even for a rather small ratio m/r. Also, among the

methods that only exploit the restricted-transitions structure, we have observed that typically

the O-R method provides the best results, while the O-F is badly affected by the large block

size. The use of the censored process, either C-R or C-F, can in some cases provide some

additional gains. However, given the overhead required by the C methods, compared to the

simpler O-R, the latter appears as a better option when the additional structure of Remark 1

is absent. Notwithstanding, when this additional structure is present, the use of the censored

process leads to very important gains. In this case the C*-R method has the best performance

for low loads, while for high loads the C*-F2 approach is the best alternative to compute π.

References

[1] A. S. Alfa, Matrix-geometric solution of discrete time MAP/PH/1 priority queue, Naval

Research Logistics 45 (1998), 23–50.

[2] D. Bini, G. Latouche, and B. Meini, Solving nonlinear matrix equations arising in tree-

like stochastic processes, Linear Algebra and its Applications 366 (2003), 39–64.

[3] , Numerical methods for structured Markov chains, Oxford University Press, 2005.

[4] D. Bini and B. Meini, On the solution of a nonlinear matrix equation arising in queueing

problems, SIAM Journal of Matrix Analysis and Applications 17 (1996), 906–926.

[5] Y. Chandramouli, M. Neuts, and V. Ramaswami, A queueing model for meteor burst

packet communication systems, IEEE Transactions on Communications 37 (1989), 1024–

1030.

[6] A. Cumani, On the canonical representation of homogeneous Markov processes modeling

failure-time distributions, Microeconomics and Reliability 22 (1982), 583–602.

[7] J. E. Diamond and A. S. Alfa, On approximating higher order MAPs with MAPs of order

two, Queueing Systems 34 (2000), 269–288.

[8] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, Solution of the Sylvester

matrix equation AXBT + CXDT = E, ACM Transactions on Mathematical Software 18

(1992), 223–231.

[9] G. H. Golub, S. Nash, and C. Van Loan, A Hessenberg-Schur method for the problem

AX+XB=C, IEEE Transactions on Automatic Control 24 (1979), 909–913.

29

[10] G. H. Golub and C. Van Loan, Matrix computations, The Johns Hopkins University

Press, 1996.

[11] W. K. Grassmann and J. Tavakoli, Solving QBD processes when levels can increase only

in certain phases, Manuscript in preparation, presented at the MAM6 conference, Beijing

(China), June 2008.

[12] Q. HE and M. F. Neuts, Markov chains with marked transitions, Stochastic Processes

and their Applications 74 (1998), 37–52.

[13] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov chains, Springer-

Verlag, 1976.

[14] G. Latouche and V. Ramaswami, Introduction to matrix analytic methods in stochastic

modeling, ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia,

PA, 1999. MR 2000b:60224

[15] D. Lucantoni, New results on the single server queue with a batch markovian arrival

process, Stochastic Models 7 (1991), 1–46.

[16] B. Meini, An improved FFT-based version of Ramaswami’s formula, Stochastic Models

13 (1997), no. 2, 223–238.

[17] D. R. Miller, Computation of steady-state probabilities for M/M/1 priority queues, Op-

erations Research 29 (1981), 945–958.

[18] M. F. Neuts, Matrix-geometric solutions in stochastic models, The John Hopkins Uni-

versity Press, Baltimore, 1981.

[19] M. F. Neuts, Structured stochastic matrices of M/G/1 type and their applications, Marcel

Dekker Inc., 1989.

[20] J. F. Pérez and B. Van Houdt, Quasi-Birth-and-Death processes with restricted tran-

sitions and its application to queueing systems, To appear in Performance Evaluation.

Special issue on QEST 2009.

[21] , Exploiting restricted transitions in Quasi-Birth-and-Death processes, Proceed-

ings of the 6th International Conference on Quantitative Evaluation of SysTems (QEST),

2009.

[22] V. Ramaswami, A stable recursion for the steady state vector in Markov chains of M/G/1

type, Stochastic Models 4 (1988), 183–188.

30

[23] V. Ramaswami and G. Latouche, A general class of Markov processes with explicit

matrix-geometric solutions, OR Spectrum 8 (1986), no. 4, 209–218.

[24] W. Whitt, Approximating a point process by a renewal process, I: Two basic methods,

Operations Research 30 (1982), 125–147.

[25] Ji-An Zhao, Bo Li, Xi-Ren Cao, and Ishfaq Ahmad, A matrix-analytic solution for the

DBMAP/PH/1 priority queue, Queueing Systems 53 (2006), no. 3, 127–145.

A The BMAP[2]/PH[2]/1 preemptive priority queue

The purpose of this appendix is to provide the definition of the blocks that make up the

generator matrix Q (Eq. (1)) of the MC that describes the BMAP[2]/PH[2]/1 priority queue.

First, let the matrix D̄j
1 be defined as D̄j

1 =
∑L̄1

k=j D
k
1 , for 1 ≤ j ≤ L̄1, and let D̄0

1 = D0 + D̄1
1.

The mb ×mb block B0 is given by

B0 =

D0 D1
1 ⊗ α D2

1 ⊗ α · · · DL̄1
1 ⊗ α 0

I ⊗ t D0 ⊕ T D1
1 ⊗ I · · · DL̄1−1

1 ⊗ I
. . .

I ⊗ tα D0 ⊕ T · · · DL̄1−2
1 ⊗ I

. . .

. . .
. . .

. . .
. . .

I ⊗ tα D0 ⊕ T · · · DL̄1−2
1 ⊗ I DL̄1−1

1 ⊗ I D̄L̄1
1 ⊗ I

. . .
. . .

...
...

...

I ⊗ tα D0 ⊕ T D1
1 ⊗ I D̄2

1 ⊗ I
I ⊗ tα D0 ⊕ T D̄1

1 ⊗ I
0 I ⊗ tα D̄0

1 ⊕ T



,

where mb = ma+Cmam1 and I is the identity matrix of appropriate dimension. Since in level

zero there are no low-priority customers, all the transitions in B0 are associated to arrivals

and service completions of high-priority customers. In addition, the finiteness of the high-

priority buffer is reflected in the last block column of B0, e.g., if there are C − 2 high-priority

customers in the queue and 2 or more of these customers arrive in a batch (D̄2
1), the queue

will only accept 2 and the others will be dropped. The transitions from level zero to upper

levels are governed by the mb ×m blocks Bj , defined as

Bj =


Dj

2 ⊗ β 0 · · · 0

0 Dj
2 ⊗ β ⊗ I · · · 0

...
...

. . .
...

0 0 · · · Dj
2 ⊗ β ⊗ I

 , j = 1, . . . , L̄1,

31

where m = mam2 + Cmam2m1. Since in level zero there are no low-priority customers, if

one of these arrives and finds the server idle, it starts service immediately, selecting an initial

service phase according to β. If there is a high-priority customer in service, the incoming

customer selects the phase in which it will eventually start service. The m × mb block C0

holds the transitions from level one to level zero and is given by

C0 =


Ima ⊗ s 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 ,
which reflects the fact that the completion of a low-priority service can only occur if there are

no high priority customers in the system.

Before determining the remaining blocks we define the operator R(·) applied on a matrix

M as R(M) = Im2 ⊗M , which will help to make the notation simpler. The m×m block A1

is defined as

A1 =

D0 ⊕ S D1
1 ⊗R(α) D2

1 ⊗R(α) · · · DL̄1
1 ⊗R(α) 0

I ⊗ t D0 ⊕R(T) D1
1 ⊗ I · · · DL̄1−1

1 ⊗ I
. . .

I ⊗ tα D0 ⊕R(T) · · · DL̄1−2
1 ⊗ I

. . .

. . .
. . .

. . .
. . .

. . .

I ⊗ tα D0 ⊕R(T) · · · DL̄1−1
1 ⊗ I D̄L̄1

1 ⊗ I
. . .

. . .
...

...

I ⊗ tα D0 ⊕R(T) D̄1
1 ⊗ I

0 I ⊗ tα D̄0
1 ⊕R(T)



.

The first block row of this matrix reflects how a low-priority customer that is being attended

may be preempted by the arrival of a batch of high-priority customers, and the first customer

in the batch starts service in a phase selected according to α. The use of R(·) reflects that

the system ‘remembers’ the phase in which the first low-priority customer in the queue will

eventually re-start its service. The transitions to upper levels are driven by the blocks

Aj+1 =


Dj

2 ⊗ I 0 · · · 0

0 Dj
2 ⊗ I · · · 0

...
...

. . .
...

0 0 · · · Dj
2 ⊗ I

 , j = 1, . . . , L̄1, (22)

which are related only to arrivals of low-priority customers. This concludes the description

of the blocks since the block A0, that holds the transitions from level k to level k − 1, was

already described in Section 4.3.

32

Tables

ρ CR-R CR-F FI-R FI-F O-R O-F C-R C-F C*-R C*-F C*-F2

0.1 1.6 1.6 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.3 0.4

0.3 2.6 2.7 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.1

0.5 3.5 3.6 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.1

0.7 5.3 5.4 0.8 0.9 0.5 0.9 1.4 0.8 0.9 0.3 0.3

0.9 13.7 8.6 9.3 4.1 8.4 2.7 11.6 8.2 10.6 7.2 1.7

Table 1: Computation times (sec) for L̄ = 10, ns = 10

ρ CR-R CR-F FI-R FI-F O-R O-F C-R C-F C*-R C*-F C*-F2

0.1 129.2 132.6 2.5 5.9 0.5 3.9 0.4 0.4 0.3 0.3 0.4

0.3 145.3 149.6 6.1 10.4 0.5 5.5 0.5 0.5 0.4 0.3 0.4

0.5 201.4 210.8 14.3 23.7 1.0 10.4 1.1 1.0 0.6 0.5 0.6

0.7 240.9 264.3 45.0 68.3 4.3 27.5 4.9 4.3 2.9 2.4 1.5

0.9 388.3 447.4 214.5 273.6 55.3 113.3 58.7 55.5 49.2 46.4 10.8

Table 2: Computation times (sec) for L̄ = 10, ns = 50

33

ρ CR-R CR-F FI-R FI-F O-R O-F C-R C-F C*-R C*-F C*-F2

0.1 196.7 203.8 5.4 12.6 1.8 9.0 1.6 1.9 0.5 0.5 0.6

0.3 251.7 261.7 11.5 21.5 3.1 12.8 3.2 2.8 0.8 0.7 0.8

0.5 291.0 311.1 27.1 47.2 8.2 23.5 7.5 7.1 1.8 1.4 1.3

0.7 393.7 424.4 104.5 135.2 34.3 62.5 35.7 34.5 11.0 9.3 3.6

0.9 740.5 717.5 561.0 538.0 285.0 252.0 210.0 200.6 182.2 172.9 28.2

Table 3: Computation times (sec) for L̄ = 20, ns = 50

ρ CR-R FI-R O-R O-F C-R C-F C*-R C*-F C*-F2 LR

0.1 51.0 1.1 0.3 1.2 0.5 0.4 0.4 0.4 0.4 2.09E-09

0.3 112.5 2.4 0.4 2.1 0.5 0.6 0.4 0.4 0.4 2.25E-06

0.5 164.8 5.7 0.8 4.2 1.0 0.9 0.7 0.6 0.7 5.92E-05

0.7 222.0 15.3 1.8 10.3 2.9 1.8 2.5 1.4 1.4 4.67E-04

0.9 282.8 59.1 13.2 38.7 20.1 13.5 17.8 9.7 5.0 1.93E-03

Table 4: Computation times (sec) for L̄ = 5, C = 20

ρ INF FI-R O-R O-F C-R C-F C*-R C*-F C*-F2 LR

0.1 2 17.4 1.9 11.7 2.6 3.3 1.9 1.9 2.5 2.14E-18

0.3 343 37.4 2.7 17.2 4.3 5.6 2.7 2.8 3.8 8.10E-12

0.5 1010 84.9 5.0 32.2 7.7 10.4 4.3 4.5 6.1 1.25E-08

0.7 2427 223.1 12.7 79.2 17.9 21.7 9.5 9.7 11.3 1.41E-06

0.9 6832 846.2 71.1 308.9 95.3 81.4 59.9 45.2 31.7 3.70E-05

Table 5: Computation times (sec) for L̄ = 5, C = 50

ρ INF FI-R O-R O-F C-R C-F C*-R C*-F C*-F2 LR

0.1 55 31.0 5.0 28.0 9.3 13.4 4.7 4.8 5.7 2.77E-10

0.3 4149 69.1 9.8 39.6 16.0 24.6 6.6 7.0 8.2 2.33E-07

0.5 10661 171.3 24.0 76.7 30.3 29.5 10.9 10.0 11.2 6.58E-06

0.7 31033 497.2 76.1 195.8 93.6 87.0 32.6 25.8 22.8 5.90E-05

0.9 82545 1832.9 398.3 699.4 475.7 426.4 240.3 187.2 64.9 2.78E-04

Table 6: Computation times (sec) for L̄ = 15, C = 50

34

ρ INF FI-R O-R O-F C-R C-F C*-R C*-F C*-F2 LR

0.1 44 36.7 5.5 28.2 11.5 14.8 6.1 6.1 7.0 3.87E-14

0.3 1854 81.6 10.3 41.1 18.0 26.5 8.5 8.9 10.2 1.44E-11

0.5 2730 201.7 24.6 78.1 32.6 31.8 12.2 11.5 12.8 2.58E-10

0.7 4247 575.3 79.3 202.8 92.9 89.1 28.7 24.6 21.0 1.82E-09

0.9 6312 2570.4 700.8 1035.2 740.0 628.8 390.8 306.0 71.6 8.06E-09

Table 7: Computation times (sec) for L̄ = 15, C = 50, v1 = 0.1

35

