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Mean Field Calculation for
Optical Grid Dimensioning

Benny Van Houdt, Chris Develder, Juan F. Pérez, Mario Pickavet, Bart Dhoedt

Abstract—For traditional optical network dimen-
sioning, a plethora of algorithms exists to design
the amount of network resources required to accom-
modate a given amount of traffic, expressed as a
(source,destination)-based traffic matrix. In optical
Grid dimensioning however, the anycast principle
applies: Grid users do not really care where exactly
their tasks (Grid jobs) end up being executed. Thus,
the destination of traffic is not known beforehand and
traditional dimensioning algorithms are not applica-
ble. In this paper we propose a mean field calculation
method to analytically derive the traffic matrix for
given job arrival intensities at the originating Grid
sites (the sources). We also indicate how it can be
integrated in a step-wise dimensioning approach to
compute not only the amount of network resources,
but also Grid resources (computational and/or stor-
age). Hence it forms part of a solution for Grid dimen-
sioning: determining how many servers to provide,
where to place them, and which network to install
for interconnecting server sites and users generating
Grid jobs.

Index Terms—Grids, Dimensioning, Mean Field Cal-
culation

I. INTRODUCTION

IN several research fields, the need arose to build

powerful computer systems to face computational

and data storage challenges (e.g. particle physics,

astrophysics, etc.). To meet the demand for a huge

common resource pool to process the tasks (jobs) at

hand, networks interconnecting cluster centers were

deployed. This led to the creation of so-called Grids.

More recently, the potential of Grid infrastructure

for more consumer/business oriented applications was

acknowledged by industry, and referred to as cloud

computing [1]. (In this paper, we will stick to the

term Grids to also include cloud computing.) To realize

the interconnecting Grid network, optical technology

is the solution of choice, able to meet both the high

data rates typical of many e-science applications and
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Fig. 1. The Grid dimensioning problem involves both network
and Grid resource dimensioning to cater for a given load of jobs
submitted by users.

the low latency requirements associated with most

business/consumer solutions. Grids based on optical

network infrastructure promise to offer cost and re-

source efficient delivery of network services with high

data rate, processing and storage demands for a geo-

graphically widely dispersed user base.

To maximize the fulfillment of that promise, some

fundamental questions should be addressed, such as

(re)designing the architecture of a flexible optical layer

(e.g. evolving to Grid-OBS [2], [3], or some hybrid

circuit/burst networks) and the development of ap-

propriate routing and scheduling algorithms for these

networks. Major differences with traditional network

design originate from the anycast routing principle:

Grid users generally do not care where exactly their

jobs end up being executed, as long as they get ex-

ecuted timely. Hence, jobs can be sent off to ‘any’

suitable location and traffic volume is dependent on

dimensions and locations of computation/storage re-

sources, as well as the job scheduling algorithm. These

Grid specific aspects give rise to multiple challenging

research questions [4], [5], e.g. jointly optimizing not

just (computational) Grid resources, but also the un-

derlying optical network interconnecting them.

In this paper, we focus on the problem of Grid di-

mensioning, as sketched in Fig. 1. The input is a given

network topology—the locations of the sites where jobs

originate (or aggregation points where they are col-

lected, e.g. points-of-presence of Grid service providers)

and a (backbone) network interconnecting them—and

the amount of Grid jobs generated at each of the

sites. We want to find where to provide how much

server capacity (esp. for computation), and the network
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dimensions required to process the submitted jobs. The

aforementioned anycast principle complicates answer-

ing these questions with traditional algorithms, since

we lack the complete so-called traffic matrix stating

the amount of bandwidth exchanged between each

(source, destination)-pair: the destination of a Grid job

can be freely chosen by some job scheduling algorithm.

For example, in Fig. 1 it is a priori not known which

fraction of the jobs originating at site E will be sent to

each of the server sites A, B and D.

In the subsequent Section II, we will describe a

proposal to solve this Grid dimensioning problem and

related work. One particular step of the dimensioning

methodology requires calculating inter-site bandwidth,

for which we propose an analytical mean field solution

discussed in detail in Section III. We discuss a case

study on a realistic European network scenario in

Section IV and conclude in Section V.

II. DIMENSIONING OPTICAL GRIDS

A classical network design problem is dimensioning:

how much capacity is needed for the network to be

able to transport a given amount of traffic? Typically,

this traffic is specified in a traffic matrix giving the

amount of traffic Di,j flowing from site i to j (e.g. in

Mbit/s). Well-known research literature on network di-

mensioning assumes this given traffic matrix D, yet in

Grids this is not known a priori (cf. anycast principle).

Moreover, for Grids, in addition to the network, also

computational and storage capacity of the servers at

the various Grid sites needs to be dimensioned. In this

work, we focus on computational Grids: we need to

determine the amount of processors (CPUs) to place

at each of the chosen Grid sites.

A. Related work

For dimensioning (optical) networks without con-

sidering the Grid resources, a broad range of algo-

rithms are available. The algorithms vary depend-

ing on the network technologies and topologies (e.g.

single or multi-layer [6], with or without grooming

[7]; for ring [8] or mesh networks), design criteria

(e.g. survivability [9], availability), single or multi-

period planning [10], single domain or hierarchical

networks [11], etc. Yet, for dimensioning grids, the

anycast routing principle gives rise to the problem

of accurately estimating the (source,destination)-based

traffic matrix these approaches all rely on.

In Grids also the computational and/or storage re-

sources need to be dimensioned: how many servers

need to be installed, and at which sites? The latter

will have an impact on where jobs will end up being

executed, i.e. the eventual traffic matrix, hence the

network dimensions. It is clear that jointly determin-

ing both server and network dimensions is a very hard

problem (even single-period network dimensioning for

a given traffic matrix may already be NP-hard [12]).

Therefore, we will propose a phased approach, dimen-

sioning first the servers and then the network (see

Section II-B).

Related work on dimensioning Grids is scarce. In

[13] analytical ILP (integer linear programming) and

heuristic approximations are used to cater for excess

load: it is assumed that each of the Grid sites (dimen-

sioned for the locally generated jobs) may suffer from

overload, and network dimensions (number of wave-

lengths and fibers used) are determined by finding a

global optimum over all single-site overload problems.

One way to deal with the unknown destination for

Grid jobs is to assume that the fraction of jobs (orig-

inating at a particular site) going to a given compu-

tational Grid site is known, thus fixing a priori the

arrival rates of jobs at each job execution site. This

approach is taken in [14] (assuming OBS), where an

analytical methodology known as reduced load fixed-

point approximation [15] is used to dimension both

network and computational resources.

In this paper however, we focus on a ‘clean slate’

or greenfield Grid dimensioning problem finding the

complete Grid capacity required to meet a given Grid

job arrival pattern. Also, we assume fully flexible

scheduling strategies without any knowledge of a pri-

ori given probabilities for selecting a given destina-

tion site. Yet, since scheduling algorithms as such

are not in the scope of this paper, we will assume

fairly straightforward scheduling strategies, based on

a single all-knowing scheduler, finding a free server

for every arriving job based solely on the job’s arrival

time and duration, and server processing speed and

occupation. For more advanced scheduling algorithms,

including e.g. advance reservation concepts and QoS

support, we refer to [16], [17].

B. An iterative dimensioning approach

To deal with the complex problem of calculating the

required amount of Grid and network resources, we

proposed an iterative approach to Grid dimensioning

[?], comprising successive steps eventually leading to a

traffic matrix, allowing traditional algorithms to solve

the network dimensioning problem for the network

technology of choice. This iterative approach can be

summarized as follows:

D1. Out of the N Grid sites, find the Ns best server

locations to install servers.

D2. Determine the amount of server capacity (number

of CPUs) to install at each of the Ns chosen server

locations.

D3. Calculate the amount of jobs Di,j sent from each

originating site i to each of the destination sites j
(being one of the Ns chosen locations).

D4. Calculate the network dimensions for the traffic

demand matrix D from step D3.

In this approach, steps D1–D2 were solved analyti-

cally by respectively a fairly simple ILP solution and
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heuristic calculations, as described in detail in [?].

The ILP for step D1 aims to minimize the bandwidth

used for transferring the Grid jobs to the servers,

making some simplifying assumptions. In step D2, we

use the well-known ErlangB formula to calculate the

total amount of servers required, and use heuristics

to distribute this server capacity over the locations

chosen in step D1. For step D3, in previous work we

resorted to (time consuming) simulations. For the final

step D4, traditional algorithms for (optical) network

dimensioning can be used, taking the traffic matrix

D calculated in step D3 as input. It is important to

stress that the network topology (and link capacities)

will not influence step D3, meaning no routing issues

are considered during this step. The link capacities

are only determined in step D4 by making use of the

traffic matrix D obtained in step D3 and the network

topology.

In this paper, we introduce an analytical framework

for step D3. When making some a priori assump-

tions about the distribution of jobs over the various

Grid sites, fixed point approximation (FPA) has been

successfully used for analytical dimensioning of the

underlying optical network (e.g. [14] for the OBS case).

Yet, if we want to model scheduling algorithms choos-

ing any of the Grid sites having a free server at

job arrival, the discrepancy between an FPA model’s

results and simulations is large [?]. In Section III,

we introduce another analytical approach called mean

field calculation. We will show that this method is

practical for the Grid dimensioning case at hand and

closely matches with (time consuming) simulations.

Thus, the mean field solution can be used for step

D3 and speed up the dimensioning cycle by avoiding

simulations.

As stated before, the amount of jobs sent to a partic-

ular site also depends on the scheduling algorithm. In

this paper, we consider two alternatives (random and

mostfree, see further) to choose a server when a job

arrives. In either case, if the job arrives at site i and

this has a free server CPU at that time, this local CPU

at site i will be chosen. Note that we consider that a

job will occupy a single server CPU for the entire job

duration. (We do not model job interdependencies, e.g.

for user tasks comprising multiple jobs.)

III. A MEAN FIELD SOLUTION FOR INTER-SITE

BANDWIDTH CALCULATION

The model as described in detail below, is a discrete-

time model, where time is subdivided in so-called

epochs of a fixed duration. A Grid site (recall Fig. 1)

will be characterized by the number of servers it has

(zero or more), and the amount of jobs arriving at this

site. Each of the servers is assumed to be identical,

and is able to process one job at a time. The analytical

methodology used only works efficiently if the amount

of different site characteristics is limited: sites will be

partitioned into classes, where all sites of a particular

class have the same number of servers and identical

job arrival processes. We will show that, despite this at

first sight severe limitation, the method is applicable

in realistic scenarios.

We now describe the mean field (MF) solution, start-

ing off with the assumed Grid network and job models.

Subsequently, in Section III-B we outline the analyti-

cal framework for solving the case where all Grid sites

are identical in job arrival process and server capaci-

ties. The general case, where Grid sites—as in most

practical cases—differ in amount of traffic arriving

and/or server capacities, is treated in the Appendix. In

III-C we explain how to compute the demand matrix

D from the mean field model results.

A. Grid model

We consider a grid network consisting of N sites,

partitioned into K classes, assuming all sites belong-

ing to the same class k have the same characteristics:

1) a class-k site has C(k) identical servers,

2) the inter-arrival times (IATs) of jobs originating

at a class-k site are independent and identically

distributed (i.i.d) and follow a discrete-time phase-

type (PH) distribution with parameters (~α(k), T (k))
(cf. infra),

3) processing a job at a class-k site takes a geometric

amount of time with mean 1/p(k).

This class partitioning may seem to limit the appli-

cability of the mean field solution discussed below.

However—as we will illustrate in Section IV for re-

alistic scenarios—clustering techniques can be used

to achieve such partitioning into a limited number of

classes.

The model is a discrete-time model where at each

time epoch, three sequences of events occur:

S1. Service completions: each class-k occupied server

becomes idle with probability p(k).

S2. Arrivals: at each site either 0 or 1 job arrives with

a probability depending on the underlying phase

of the arrival process at that particular site (see

below; the model can easily be extended to batch

arrivals of > 1 jobs). If a job arrives at a site with

at least one local server (i.e., at the same site)

available after step S1, the job is processed by a

local server. Otherwise, the job becomes part of the

pool of excess jobs.

S3. Excess redistribution: All excess jobs after step S2

are distributed among the servers that remained

idle in step S2.

To redistribute j excess jobs over s idle servers in step

S3, we consider two redistribution schemes: mostfree

and random. Clearly, if j > s, all servers become

occupied and we drop j−s jobs. For j ≤ s, the mostfree

strategy will assign the j jobs one by one, each time

selecting the site with the highest number of free
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servers (at the time of assignment). The random strat-

egy simply selects the j servers at random among the s
available ones, without considering the occupancy level

of the site to which a server belongs.

With respect to the dropped jobs, we should add that

as the number of Grid sites increases the job drop

probability will decrease to zero. In actual fact the

mean field model describes the limiting case as the

number of sites goes to infinity and therefore its drop

probability equals zero. For a finite, large number of

sites job losses will be rare and could be even further

reduced by adding finite buffers to each of the sites. In

this case we might either decide (1) to forward a job

only to another site when all the local servers are busy

and the local buffer is full or (2) to buffer the job locally

if none of the sites has an available server. The mean

field model in this paper could be extended to capture

both cases, though in the latter case the results would

coincide as in the limiting case we have no losses.

The mean field analysis presented below computes

exact results for the limiting system behavior (i.e.

steady state) when the number of sites per class goes

to infinity. However, the number of sites per class

does not have to be identical: if the number of class-k
sites is defined as γkN (where

∑

k γk = 1), then the

limiting behavior corresponds to letting N approach

infinity. Our case study will show that for practical

site counts (some tens to a few hundreds), the limit

behavior matches quite well with simulations for a

finite number of sites.

Before we proceed, let us briefly discuss the discrete-

time PH arrival process. It can, among others, capture

any IAT distribution with a finite support (i.e. with a

finite number of possible outcomes) and many moment

matching procedures have been developed such that

real-life higher moment measurements can be easily

incorporated in the process [18]. Let Xn be the IAT

between the nth and n + 1st arrival. Formally, the PH

process is a discrete-time renewal process (the IATs

(Xn)n≥0 are i.i.d.) characterized by a stochastic 1 × h
vector ~α (i.e., a vector with non-negative entries that

sum to one) and a sub-stochastic h×h matrix T (i.e., a

matrix with non-negative entries whose row sums are

smaller than or equal to one), with h ≥ 1, such that

for s ≥ 1, P [Xn = s] = ~αT s−1~θ, where ~θ = ~eh − T~eh,

with ~eh an h × 1 vector with all its entries equal to

one. For instance, setting h = 1 results in a Bernoulli

arrival process (the discrete time variant of the Poisson

process). Also, any mixture of h geometric distributions

can be realized by a diagonal T matrix containing

the geometric parameters and a stochastic vector ~α
holding the weights of each of the distributions.

In order to obtain a suitable h, vector ~α and matrix T
in practice, one typically starts by measuring the first

few moments of the IATs and matches these using a

PH-distribution as in [18]. In Section IV we will rely on

the first three moments of the IAT distribution, which

typically results in an order 2 phase-type distribution,

i.e., h = 2. Thus, as demonstrated in Section IV-D,

phase-type IATs allow us to change the variation of

the IATs, while keeping the mean fixed. In case of a

Poisson (or Bernoulli) process the variation is uniquely

determined by its mean providing less flexibility.

The PH renewal process is very suitable for Marko-

vian modeling environments as ~αs may be regarded as

the probability that the IAT starts in phase s. Further,

given that the phase at the current time instant equals

s, the arrival process will be in phase s′ at the next

time instant with probability [T ]s,s′ without having

an arrival, whereas [~θ~α]s,s′ gives the probability that

there is an arrival and the initial phase of the next IAT

is s′ (note: [X]s,s′ is entry (s, s′) of the matrix X). In

our model each class-k site is fed by its own instance

of a PH renewal process with parameters (~α(k), T (k)).

B. A mean field solution for the single class Grid

network

We first consider a Markovian model for the single

class Grid network (K = 1); as such we can tem-

porarily drop the superscript (k). For example, if the

Grid dimensioning approach (in step D2, Section II-B)

equally distributes server capacity over the chosen

server locations, all these locations are identical in

terms of server/processing capacity, each site having C
servers. If we also assume all server locations have the

same job arrival process, this amounts to a single class

grid network, using the aforementioned terminology.

The idea of the Markovian model is to associate

h · (C + 2) states with each site. State 〈i, j〉, with

0 ≤ i ≤ C + 1 and 1 ≤ j ≤ h, indicates that i jobs

are present at the site after step S2, while the arrival

process is in phase j. Recall that after step S2 a site

can hold C + 1 jobs if all its servers were busy before

this step and a new (excess) job arrives. Given that we

have N sites, we get a total of hN · (C + 2)N states,

which clearly can become huge. However, the mean

field computation will be restricted to matrices of size

h · (C + 2) and therefore turns out to be very effective.

1) Step S1, service completions: Given that i of the

C servers are busy, i′ of them will become available

with probability si,i−i′ =
(

i
i′

)

pi′(1 − p)i−i′ . For further

use, we define the h(C +1)×h(C +1) triangular matrix

S as

S =













s0,0 0 . . . 0

s1,0 s1,1
. . .

...
...

. . .
. . . 0

sC,0 . . . sC,C−1 sC,C













⊗ Ih, (1)

where Ih is the identity matrix of size h (reflecting

the fact that the phase of the arrival process is not

influenced by the service completions) and ⊗ denotes

the Kronecker product between matrices.
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2) Step S2, job arrivals: Given that the PH renewal

process is in state j, it will generate an arrival and go

to state j′ with probability [~θ~α]j,j′ , while with probabil-

ity [T ]j,j′ a similar transition occurs without involving

an arrival. We also define the h(C+1)×h(C+2) matrix

A as

A =













T θα 0 . . . 0

0 T θα
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 T θα













. (2)

3) Step S3, excess redistribution: The state transi-

tion at time t due to the redistribution of the excess

jobs at a site is influenced by the vector ~MN (t) =
1/N · (a0(t), a1(t), . . . , aC(t), aC+1(t)), where

• ai(t) for i = 0 . . . C is the number of sites with

i busy servers after step S2 that do not have an

excess job, while

• aC+1(t) indicates the number of sites with an

excess job (i.e., the total number of excess jobs

at time t). All C servers of these sites are clearly

occupied.

Thus, the i-th entry ~MN
i (t) of the vector ~MN (t) equals

the fraction of sites holding i jobs (incl. excess job) after

step S2.

First consider the mostfree strategy. Let qi,i′( ~MN (t))
be the probability that a site receives i′ − i ≥ 0 excess

jobs, given that it held i ≤ C jobs after step S2. For

mostfree,

• the first a0(t) excess jobs will be assigned to the

sites with all their servers available,

• the next a0(t) + a1(t) excess jobs are forwarded to

the sites that had either 0 or 1 busy server (after

this step all the sites with 0 busy servers received

two excess jobs, while those with 1 busy server

received 1 excess job),

• this continues until all aC+1(t) jobs have been

distributed among the free servers or until all

servers are busy.

For ease of notation define bi(t) =
∑i

k=0 ak(t) as the

number of sites with at most i busy servers after

step S2. Provided that we have enough free servers to

support the excess jobs, we can find a c, with 0 ≤ c < C,

such that

c−1
∑

k=0

bk(t) < aC+1(t) ≤

c
∑

k=0

bk(t), (3)

which we denote as c( ~MN (t)) (for aC+1(t) = 0, we set

c = 0). In other words, all sites with i ≤ c( ~MN (t))
busy servers after step S2 (b

c( ~MN (t))(t) in total) will

end up with at least c( ~MN (t)) jobs and some of them

with c( ~MN (t)) + 1 jobs, after step S3. The fraction of

these sites with c( ~MN (t)) jobs equals

β
c( ~MN (t)) =

∑c( ~MN (t))
k=0 bk(t) − aC+1(t)

b
c( ~MN (t))(t)

. (4)

Thus, i′ − i ≥ 0 jobs are received by a site with

i busy servers with probability β
c( ~MN (t)) whenever

i′ = c( ~MN (t)) and with probability 1 − β
c( ~MN (t)) for

i′ = c( ~MN (t)) + 1. If the number of free servers
∑C−1

k=0 bk(t) is insufficient to support the aC+1(t) jobs,

we let c( ~MN (t)) equal C. In this case all the servers

become occupied. This yields,

qi,i′( ~MN (t)) =


















1 − β
c( ~MN (t)) i < i′ = c( ~MN (t)) + 1 ≤ C,

β
c( ~MN (t)) i ≤ i′ = c( ~MN (t)) < C,

1 i = i′ > c( ~MN (t))

1 i′ = C = c( ~MN (t)),

(5)

for 0 ≤ i, i′ ≤ C, where the third case indicates that no

jobs are received when i > c( ~MN (t)). For further use,

we also define the h(C +2)×h(C +1) matrix Q( ~MN (t))
as

Q( ~MN (t)) =












q0,0( ~MN (t)) q0,1( ~MN (t)) ... q0,C( ~MN (t))

0 q1,1( ~MN (t)) ... q1,C( ~MN (t))

...
. . .

. . .
...

...
. . . 0 qC,C( ~MN (t))

0 ... 0 1













⊗ Ih, (6)

where the 1 in the lower right corner indicates that

sites with C + 1 jobs after step S2 will end up with C
jobs after step S3 (either due to a redistributed or a

dropped job).

Next, consider the random redistribution strategy

for the excess jobs, defining Q̄(.) analogously to most-

free’s Q(.). Assume site s has i occupied servers. In

total there are f( ~MN (t)) =
∑C

k=1 aC−k(t)k servers to

choose from and C−i of them belong to site s. Therefore

the probability that 0 ≤ i′ ≤ C − i excess jobs are

assigned to site s, equals

q̄i,i+i′( ~MN (t)) =

(

C−i
i′

)(

f( ~MN (t))−(C−i)
aC+1(t)−i′

)

(

f( ~MN (t))
aC+1(t)

)

, (7)

provided that f( ~MN (t)) ≥ aC+1(t), otherwise we have

for all i that q̄i,C( ~MN (t)) = 1.

4) Combining steps S3, S1 and S2: To obtain a

useful discrete time Markov chain description of the

system, we will observe it at each time epoch immedi-

ately after step S2 and before step S3. Given the state

〈i, j〉 of site s at time t (with i the number of jobs, and

j the PH phase, see above), we can obtain its system

state at time t + 1, which depends on ~MN (t), via the

transition matrix K( ~MN (t)) defined as

K( ~MN (t)) = Q( ~MN (t)) · S · A, (8)

for the mostfree strategy. (For the random strategy, we

simply replace Q(.) by Q̄(.) to obtain K̄( ~MN (t)).) Since

the state evolution of different sites are correlated,

the transition matrix of the entire system is hard

to express. Luckily, the mean field computation only
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requires K( ~MN (t)) for N going to infinity and will

allow us to express ~MN (t + 1) as a simple function

of ~MN (t) using K( ~MN (t)) for N large.

5) Fast computation of ~MN (t) for large N : The main

objective of the grid network model is to be able to

calculate inter-site rates (cf. traffic matrix). Given the

rate rkj of excess jobs of a particular class-k site pro-

cessed by any of the γjN class-j sites, the traffic rate

from a single class-k site to a single class-j site equals

rkj/(γjN). For the single class model, r11 is given by

the last component of the occupancy measure ~MN (t)
for t large enough: ~MN

C+1(t) represents the proportion

of the sites that hold an excess job just prior to the

redistribution step.

To find ~MN (t), we apply a generic framework of

interacting objects introduced in [19]. Under some

fairly mild conditions, as the number of objects be-

comes large, the occupancy measure of the system

converges to a deterministic dynamical system,—the

mean field—that has the same dimension as a single

object. In our Grid model, we associate a single object

with each site, such that the matrix K( ~MN (t)) (or

K̄(.), the discussion below applies to both) describes

the evolution of a single object as a function of the

occupancy measure ~MN (t).

The convergence result [19, Theorem 4.1] is proven

to hold if there exists a K( ~M(t)) matrix, such

that for each entry [K( ~MN (t))]s,s′ , the set of func-

tions {[K( ~MN (t))]s,s′ , N ≥ 1} converges uniformly to

[K( ~M(t))]s,s′ on the set of all possible occupancy vec-

tors ~M(t). For the mostfree model this convergence is

immediate as the K( ~MN (t)) matrices are independent

of N (to see this, simply divide all the ak(t) and

bk(t) appearing in Q( ~MN (t)) by N ). For the random

strategy, we define q̄i,i+i′( ~M(t)) as

q̄i,i+i′( ~M(t)) =

(

C − i

i′

)

(

~MC+1(t)

f( ~M(t))

)i′ (

1 −
~MC+1(t)

f( ~M(t))

)C−i−i′

, (9)

with f( ~M(t)) =
∑C

j=1
~MC−j(t)j, if ~MC+1(t) ≤ f( ~M(t)),

otherwise q̄i,C( ~M(t)) = 1 for all i. Finally, define

Q̄( ~M(t)) analogously to (6). It is not hard to show that

the set of functions {[K̄( ~MN (t))]s,s′ , N ≥ 1}, for any s, s′

converges uniformly to [K̄( ~M(t))]s,s′ = [Q̄( ~M(t))SA]s,s′

on the set of all occupancy vectors ~M(t).

Next, [19] requires K( ~M(t)) to be continuous in
~M(t), which is clearly the case for both mostfree and

random. Thus, due to [19, Theorem 4.1], the following

convergence result for the mean field applies. Define

the 1 × h(C + 2) vector ~µ(0) as (~α, 0, . . . , 0), where ~α is

the initial vector of the PH renewal process (i.e. system

empty at 0) and let

~µ(t + 1) = ~µ(t)K (~µ(t) (IC+2 ⊗ ~eh)) . (10)

Then, for any t, almost surely,

lim
N→∞

~MN (t) = ~µ(t) (IC+2 ⊗ ~eh) . (11)

Thus, to compute the mean field at time t, it suffices to

perform t matrix multiplications with matrices of size

h(C + 2) only.

As h = 2 often suffices to match up to three moments

of the IAT distribution, h(C + 2) will be fairly small,

resulting in a fast computation of ~µ(t). Since our inter-

est lies mainly in steady state behavior (i.e. t large), we

will iteratively compute ~µ(t) until ||~µ(t)−~µ(t−1)|| < ǫ,
for small ǫ. The computation time can be reduced by

selecting a different initial vector ~µ(0), that is closer to

~µ(t) for t large; e.g., investigating excess traffic rates

for various system loads, we could use the steady state

of the previous load as an initial vector for the next

case.

C. Calculating the demand matrix D

In the previous section, the mean field approach for

the single class case was explained, allowing to calcu-

late the site occupancy measure ~MN (t). Similarly, in

the Appendix we detail how to calculate the occupancy

measure ~MN,(k)(t) for the case of multiple site classes.

There, ~M
N,(k)
i (t) represents the proportion of class-k

sites holding i jobs after step S2 (0 ≤ i ≤ C(k)+1). Thus,

the proportion of class-k sites with excess jobs equals

M
(k)

C(k)+1
(t), for t large. As all class-k sites are identical,

~M
N,(k)
i (t) is also the percentage of time in which a

class-k site has an excess job. Therefore it equals the

excess rate of a class-k site. With λ(k) the mean job

arrival rate at a class-k site, the rate of excess jobs

processed by a class-k site, denoted as λ
(k)
exc, is found as

the rate at which a class-k site completes jobs minus

the rate of completed jobs that originated in this site;

hence,

λ(k)
exc = ~µ(k)(t)Q(k)( ~M (k)(t))









0
p(k)

2p(k)

...
C(k)p(k)









⊗ ~eh(k)

− (λ(k) − ~M
(k)

C(k)+1
(t)),

(12)

for t large.

As the probability that an excess job receives service

in a class-j site is independent of its type under the

mostfree and random strategy, the rate rk,j of excess

jobs of a class-k site served by any class-j site can be

computed as

rk,j = ~M
(k)

C(k)+1
(t)

λ
(j)
exc

∑K
s=1 λ

(s)
exc

= λ(j)
exc

~M
(k)

C(k)+1
(t)

∑K
s=1 M

(s)

C(s)+1
(t)

,

for t large. From these inter-class rates, the demand

matrix D can be easily calculated: the rate from a site

s of class k to a site d of class j is Ds,d = rk,j/(γjN)
(with γjN the number of class-j sites).
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IV. NUMERICAL RESULTS

In this section we first consider two simple Grids in

order to analyze the effect of the scheduling algorithm

on the performance of the Grid, in terms of the spill

rates. Next, we test the mean field model by consider-

ing a realistic European network scenario.

A. The effect of the scheduling algorithm

We first consider a Grid consisting of many sites

partitioned in two classes. All the sites have 20 servers

and the same arrival process, a Bernoulli process with

mean IAT equal to 30 seconds. Class-2 sites represent

only 1% of the total number of sites and their load,

given by ρ(2) = λ(2)

µ(2)·C(2) , is equal to 0.95, i.e. they

are heavily loaded. The remaining 99% of the sites

are of class 1 and a load between 0.1 and 0.95 will

be considered. When their load is equal to 0.95, all

the sites in the Grid are identical. Fig. 2 shows the

total spill rate at class-2 sites, and the rate at which

these spilled jobs are sent and processed at class-1 and

class-2 sites. We observe that when the load of the

class-1 sites is low, the mostfree algorithm allocates

almost every excess job from a class-2 site to a class-

1 site. This is the case for loads up to 0.7 in this

scenario. On the other hand, the random policy assigns

a significant fraction of excess jobs to the heavily-

loaded class-2 sites. Although this has little influence

in the total spill rate of the class-2 sites for low and

mid loads, for loads above 0.75 the mostfree policy

offers a reduction in the spill rate. In fact, the total

spill rate under this policy can be up to 20% smaller

than under the random scheduling. As expected, when

both class-1 and class-2 sites have the same load, i.e.

ρ(1) = 0.95, the spill rate from class-2 sites toward both

sites of both classes are equal, while the mostfree policy

still causes a significantly smaller spill rate than the

random allocation.

Next, we consider a single-class Grid and compute

the spill rate for different values of C, the number of

servers per site. The results are included in Fig. 3,

where the difference between these two policies be-

comes apparent at high loads. We also find that the

maximum reduction in spill probability caused by us-

ing the mostfree policy is around 15% for C = 5, near

to 20% for C = 20 and above 22% for C = 100. There-

fore we see an increment in the maximum relative

difference in spill rate as the number of servers per

site increases. However, from Fig. 3, we also observe

that the load range for which the mostfree policy

outperforms the random allocation decreases with the

number of servers.

B. European Grid use case

The preconditions to allow our mean field methodol-

ogy are: (i) the job inter-arrival time (IAT) distribution

should be modeled as a discrete-time phase-type (PH)
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Fig. 2. Mean field results for a two-class Grid, with variable load
for class-1 sites.
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Fig. 3. Mean field results for a single-class Grid, with variable load
and number of servers per site.

distribution, (ii) the grid sites should be partitioned

in a limited number of classes, and (iii) the number

of Grid sites should be large enough. Conditions (ii)–

(iii) are required because the mean field assumes an

infinite number of sites per class. Hence, mean field

results are expected to be closer to those of the finite

system when sites are partitioned into a few classes

each with a significant number of sites. As discussed

in III-A, condition (i) is not really limiting, since many

real-world traces can be matched with a limited num-

ber of phases (keeping the analytical model compact)

using moment-matching procedures.

With respect to (iii), realistic use cases for Grid

dimensioning would comprise from some tens to a

couple of hundreds of sites. These numbers are still

acceptable for the methodology to be practical as will

be clear from the subsequent case studies for N = 100
sites and five classes. With respect to the computation

times, we found that the arrival process variability

affects the number of iterations required for conver-

gence of ~µ(t), while the overall load seems to have

little effect. For this case study and with ǫ = 10−10,

the computation times varied from one to ten minutes.

These times can be further reduced, especially for

the cases requiring more iterations, by initializing

the system in the following manner: let π
(k)
j be the

stationary probability of having j busy servers in an
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M/M/C(k)/C(k) queue, and let τ (k) be the stationary

distribution of the PH arrival process at station k,

i.e., τ (k) = τ (k)
(

T (k) + θ(k)α(k)
)

and τ (k)~eh(k) = 1.

Then, by setting µ(k)(0) = (π
(k)
0 , π

(k)
1 , . . . , π

(k)

C(k)) ⊗ τ (k)

we obtained a reduction of up to 80% in the number

of iterations while the computation times decreased to

less than four minutes. Note that simulation running

times in our case study differ by an order of magnitude,

amounting to several hours (e.g. for the case study

of Fig. 4, simulating 107 time units took close to two

hours).

The major limitation at first sight seems to be

constraint (ii). However, looking at real world traces,

many sites show similar behavior, which allows clus-

tering the various sites into a limited number of

classes. This can be achieved by the K-means cluster-

ing method [20], where each site is described by a set of

N variables called descriptors: (C1) Select K points in

the N -dimensional space as centroids ck (k = 1, . . . ,K);

(C2) Form clusters Ck by assigning each site s to

the closest centroid ck; (C3) Recalculate ck as the N -

dimensional mean over Ck; (C4) If any ck changed

in C3, go back to C2. We aim at characterizing each

of the clusters with a PH distribution matching the

first three moments of the IAT distribution. Hence, we

chose as site descriptors: the first non-central moment,

the squared coefficient of variation (SCV) and the third

normalized moment (n3) of the IAT distribution. Let

mi be the ith non-central moment, then define SCV =
m2

m2
1
− 1 and n3 = m3

m2m1
. The reason to prefer SCV and

n3 rather than m2 and m3 is that they are not affected

by the units in which the variables are measured. As

the IAT distribution is based on real traces, we rely on

the sample moments given by m̄i = 1
S

∑S
j=1 xi

j , where

each xj corresponds to one of the IAT samples, with S
samples in total.

For our case studies, we used traces from a real-

world EGEE/LCG Grid, deployed in Europe in the

frame of the Large Hadron Collider (LHC) experiments

at CERN in Geneva and the Enabling Grids for E-

sciencE (EGEE) project [21]. We collected Grid-wide

job arrival logs, recording the job arrival rate at 58

sites over a one month period. After screening, we left

out 8 sites because of lack of data to allow reliable

statistical analysis. We used the clustering approach

above, and partitioned the sites into K = 5 classes. To

characterize each site class, we used the average mo-

ments over the cluster’s sites. For each class we used

the method in [18] to match the first 3 moments of the

job IATs with a PH model with h = 2 phases (except

for class 2, whose very small SCV causes matching

for h = 2 to be restricted to the first 2 moments

[18]). Table I summarizes the class descriptors. It is

important to note that these characteristics greatly

vary, ranging from low to high arrival rates and from

small to large variability. To challenge the mean field

method, we considered a case study with N = 100 Grid

TABLE I
CHARACTERISTICS OF THE 5 SITE CLUSTERS

Class Mean IAT (s) SCV n3 % Sites C

1 29.75 136.45 2207.08 10% 150

2 77.24 83.40 488.69 46% 100

3 3696.46 0.46 5.73 6% 5

4 458.08 10.35 60.83 28% 10

5 1870.45 2.95 10.05 10% 10

sites, respecting the proportion of each server class as

observed in the EGEE/LCG trace.

C. Varying the Grid resource load

First, consider varying the Grid system load ρ, i.e.

setting each class-k site’s load to ρ(k) = ρ, with ρ(k) =
λ(k)

µ(k)·C(k) (where for a class-k site λ(k) is the average job

arrival rate, µ(k) the average job processing rate at a

class-k site, and C(k) the number of servers). Given

typical load values in network design, we studied

ρ ∈ [0.5, 0.9]. We assumed N = 100 sites in total,

comprising the K = 5 classes as outlined in Table I.

The number of servers at each site is chosen to obtain

the target ρ, setting the average service time 1/p(k)

for each site of class k as 1/p(k) = ρC(k) E[IAT
(k)], with

E[IAT
(k)] = 1/λ(k) the average job inter-arrival time

(IAT) for class k.
To evaluate the mean field methodology, we com-

pared the results with the outcome of simulations. For

this we implemented a discrete-event simulator and

calculated the inter-site rates Ds,d for each source site

s and destination site d. To comprehensively present

the results, the graphs will show for each class k the

proportion of jobs sent to remote sites, i.e. the spill

probability

Pspill,k =





∑

s∈classk

∑

d6=s

Ds,d



 /

(

∑

s∈classk

∑

d

Ds,d

)

.

We compared analytical results with simulations for

both random and mostfree scheduling strategies. The

graphs of Fig. 4 show that in both cases the analytical

and simulation results match very well. For the whole

load range, the analytically calculated spill rates fall

well within the 95% confidence interval (not shown on

the graphs for the sake of clarity) on simulations’ spill

rates (even though discrepancy increases for ρ = 0.9).

Looking at the numerical values, we note that the

discrepancy between analytical and simulation results

is largest for classes 1 and 2 (but still less than the

standard error on the simulation results; the standard

error for a particular spill probability for class-k is

given by stderr
(k) = σ(k)/(γkN) with σ(k) the variance

on the spill probabilities for the γkN class-k sites.)

This can be explained by the large SCV on the job

IAT in these site classes (see Table I). Note that—

as expected—the mostfree strategy achieves lower spill

probabilities than random, esp. for high loads (ρ > 0.7).
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Fig. 4. Simulation results match well with analytical mean field,
for variable Grid resource load. Note that the curves for classes 3–5
overlap to great extent.

D. Varying variance on job IAT

Having established the close match between analyti-

cal mean field and simulation results over a broad load

range, we investigated the impact of the variability of

the job inter-arrival times. Hence, we fix load ρ = 0.8,

but changed the SCV. For increasing variability on the

job IATs, we expect higher Pspill,k.

Figure 5 shows that even for larger SCV, the simu-

lation results match the analytical results very well.

As noted before, in terms of spill probability, most-

free outperforms random scheduling, but the amount

seems dependent on job IAT variability. As expected,

the overall spill probability (over all jobs, regardless of

site class) increases with growing SCV.

V. CONCLUSION

Grid dimensioning involves answering the question

how many servers to provide, where to place them, and

which network to install for interconnection of server

sites and users. Compared to traditional (optical) net-

work dimensioning, Grids differ in two aspects. First,

not only network but also server capacity needs to be

dimensioned. Second, the (source,destination)-based

traffic matrix—necessary for traditional dimensioning

algorithms—is unknown, and depends on the Grid job

scheduling algorithm.
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Fig. 5. Comparison of mostfree and random scheduling for different
SCV of the inter-arrival distribution. Note that only classes 1–3 are
shown, since results for classes 4 and 5 overlap with those of class
3.

This paper outlined a step-wise Grid dimensioning

approach, resorting to traditional algorithms for net-

work dimensioning. To calculate the required traffic

matrix, we proposed an analytical mean field solution

technique, avoiding time consuming simulation. The

preconditions to allow our mean field methodology are:

(i) job arrival should be modeled as a discrete-time

phase-type (PH) distribution, (ii) grid sites should be

partitioned in a limited number of classes (character-

ized by server capacity and job arrival parameters),

(iii) the number of grid sites N should not be too small.

Condition (i) is not really limiting, since PH models can

match real world traces up to several higher moments

already with a small number of phases (h = 2 for our

case studies). Condition (ii) can be met by clustering

real world sites into a limited number of classes (K = 5
based on a real world log comprising 50 sites). Studies

showed that with respect to (iii), for a realistic number

of sites in the range of some tens to a couple of

hundreds, the analysis very well matches simulation

results.

Feasibility of the mean field solution was illustrated

by a case study for N = 100 sites. It showed a close

correspondence between analysis and simulation for

a broad range of loads (0.5 up to 0.9) and a varying

degree of variance on the job inter-arrival times.

APPENDIX

MEAN FIELD SOLUTION FOR MULTI-CLASS GRIDS

When not all sites have the same amount of servers,

the model is a multiple class grid network. The single

class grid network case can relatively easily be ex-

tended to the multi-class setting, because the Markov

chain associated with each object in [19] is allowed to

be reducible as explained below. The framework [19]

applies to any system consisting of N objects, with

N large, that are each characterized by a transition

matrix K( ~MN (t)). This remains true if the the state

space of this transition matrix can be partitioned into

K classes such that K( ~MN (t)) can be written as a block
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diagonal matrix:

K( ~MN (t)) =










K(1)( ~MN (t)) 0 ... 0

0 K(2)( ~MN (t))
. . .

...
...

. . .
. . . 0

0 ... 0 K(K)( ~MN (t))











. (13)

Because no transitions are possible between states be-

longing to different classes, the state of an object which

belongs to class k at time t = 0 will always remain in

that class. Hence, we let K(k)( ~MN (t)) characterize the

transitions of a class-k site and define ~µ(0), the system

state at t = 0, such that γkN of the N sites start in a

class-k state.
Let ~MN,(k)(t) = (a

(k)
0 (t), . . . , a

(k)
C (t), a

(k)
C+1(t))/γkN be

the occupancy measure of the class-k sites: ~M
N,(k)
i (t)

represents the proportion of class-k sites holding i jobs

after step S2 (0 ≤ i ≤ C(k) + 1). The overall occupancy
~MN (t) equals

~MN (t) =
(

γ1
~MN,(1)(t), . . . , γK

~MN,(K)(t)
)

.

A. Computing Q(k)( ~MN (t))

To compute the mean field, we first need an expres-

sion for K(k)( ~MN (t)), the transition matrix of the class-

k sites, given that the overall occupancy measure is
~MN (t). As arrivals and service completions are not af-

fected by the presence of multiple classes we still have

K(k)( ~MN (t)) = Q(k)( ~MN (t))S(k)A(k). The Q(k)( ~MN (t))
matrices have the same form as in (6), except that the

expressions for qi,i′( ~MN (t)) and q̄i,i′( ~MN (t)) require

some modifications as all the sites influence a class-

k site and not just the other class-k sites.
1) Random scheduling: For the random strategy

case one finds

q̄
(k)
i,i+i′(

~MN (t)) =

(

C(k)−i
i′

)(f( ~MN (t))−(C(k)−i)
∑

K

k=1
a
(k)

C(k)+1
(t)−i′

)

( f( ~MN (t))
∑

K

k=1
a
(k)

C(k)+1
(t)

)

,

with f( ~MN (t)) =
∑K

k=1

∑C(k)

s=1 sa
(k)

C(k)−s
(t).

2) Mostfree scheduling: Similar to Step S3 in Sec-

tion III-B, we start by defining b
(k)
i (t) as the number

of class-k sites with at most i busy servers after step

S2 at time t; then b
(k)

C(k)−i
(t) denotes the number of

class-k sites with at least i free servers. Let aT (t) =
∑K

k=1 a
(k)

C(k)+1
(t) denote the total number of excess jobs

after step S2. Finally, without loss of generality, label

the K classes such that C(1) ≥ C(2) ≥ . . . ≥ C(K).

Provided that there are enough free servers at

time t to support the excess jobs, we have aT (t) ≤
∑C(1)

i=1

∑K
k=1 b

(k)

C(k)−i
(t), where b

(k)
i = 0 for i < 0. Hence,

for aT (t) > 0, there exists a 0 < d ≤ C(1) such that

C(1)
∑

i=d+1

K
∑

k=1

b
(k)

C(k)−i
(t) < aT (t) ≤

C(1)
∑

i=d

K
∑

k=1

b
(k)

C(k)−i
(t),

which we denote as d( ~MN (t)) (for aT = 0, we set

c = C(1)). For K = 1, c( ~MN (t)) as defined in (3) equals

C(1) − d( ~MN (t)). The value of d( ~MN (t)) corresponds

to the highest number of free servers found in any

site after step S3. Thus, any class-k site has at least

C(k)−d( ~MN (t)) busy servers after step S3. Hence, sites

that had more than d( ~MN (t)) free servers after step

S2, received one or more excess jobs such that exactly

d( ~MN (t)) or d( ~MN (t))− 1 free servers remain. Similar

to (4), the fraction of sites with d( ~MN (t)) jobs is

γ
d( ~MN (t)) =

∑C(1)

i=d( ~MN (t))

∑K
k=1 b

(k)

C(k)−i
(t) − aT (t)

∑K
k=1 b

(k)

C(k)−d( ~MN (t))
(t)

.

Notice, for K = 1, we have γ
d( ~MN (t)) = β

c( ~MN (t)).

If the number of free servers
∑C(1)

i=1

∑K
k=1 b

(k)

C(k)−i
(t) is

insufficient to support the aT (t) jobs, we let d( ~MN (t))
equal d. In this case all the servers become occupied.

This yields, for the class-k sites, for k = 1, . . . ,K

q
(k)
i,i′ (

~MN (t)) =


















1 − γ
d( ~MN (t)) i < i′ = C(k) − d( ~MN (t)) + 1 ≤ C(k),

γ
d( ~MN (t)) i ≤ i′ = C(k) − d( ~MN (t)) < C(k),

1 i = i′ > C(k) − d( ~MN (t))

1 i′ = C(k) = C(k) − d( ~MN (t)),

(14)

for 0 ≤ i, i′ ≤ C(k), where the third case indicates that

no jobs are received when i > C(k) − d( ~MN (t)).

B. Computing the mean field

For the mostfree case K(k)( ~M(t)) = K(k)( ~MN (t)), for

all N , whereas for the random setting, the uniform

limit K̄(k)( ~M(t)) is obtained in exactly the same man-

ner as in the single class model (i.e., the hypergeomet-

ric probabilities converge to binomial probabilities).

Due to [19, Theorem 4.1], we may compute the mean

field as follows:

~µ(k)(t + 1) =

~µ(k)(t)K(k)
(

γ1µ
(1)(t)

(

IC(1)+2 ⊗ ~eh(1)

)

, . . . ,

γKµ(K)(t)
(

IC(K)+2 ⊗ ~eh(K)

)

)

, (15)

for all k, with µ(k)(0) = (α(k), 0, . . . , 0) (where

(α(k), T (k)) characterizes the PH renewal process of a

class-k site). The class-k occupancy measure equals

lim
N→∞

~MN,(k)(t) = µ(k)(t)(IC(k)+2 ⊗ ~eh(k)).
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[11] A. Bley, T. Koch, and R. Wessäly, “Large-scale hierarchical net-
works: How to compute an optimal architecture?” in Proc. 11th
Int. Telecommun. Network Strategy and Planning Symposium
(Networks 2004), Vienna, Austria, 13-16 Jun. 2004.

[12] B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee,
“Some principles for designing a wide-area WDM optical net-
work,” IEEE/ACM Transactions on Networking, vol. 4, no. 5,
pp. 684–696, Oct. 1996.

[13] P. Thysebaert, F. De Turck, B. Dhoedt, and P. Demeester,
“Using divisible load theory to dimension optical transport
networks for grid excess load handling,” in Proc. Int. Conf. on
Autonomic and Autonomous Systems & Int. Conf. on Network-
ing and Systems (ICAS/ICNS 2005), Papeete, Tahiti, 23–28
Oct. 2005.

[14] M. De Leenheer, C. Develder, F. De Turck, B. Dhoedt, and
P. Demeester, “Erlang reduced load model for optical burst
switched grids,” in Proc. 3rd Int. Conf. on Networking and
Services (ICNS 2007), Athens, Greece, 19–25 June 2007.

[15] Z. Rosberg, H. Vu, M. Zukerman, and J. White, “Blocking
probabilities of optical burst switching networks based on
reduced load fixed point approximations,” in Proc. 22nd Annual
Joint Conf. of the IEEE Computer and Commun. Societies
(INFOCOM 2003), San Francisco, CA, USA, 30 Mar. – 3 Apr.
2003, pp. 2008–2018.

[16] C. de Waal et al., “D5.4 - support for advance reservations in
scheduling and routing,” IST Phosphorus project deliverable
(online: http://www.ist-phosphorus.eu/deliverables.php), June
2007.

[17] E. Varvarigos et al., “D5.2 - QoS-aware resource schedul-
ing,” IST Phosphorus project deliverable (online: http://www.
ist-phosphorus.eu/deliverables.php), Sept. 2007.

[18] M. Telek and A. Heindl, “Matching moments for acyclic discrete
and continuous phase-type distributions of second order,” Inter-
national Journal of Simulation Systems, Science & Technology,
vol. 3, pp. 47–57, 2002.

[19] J. Le Boudec, D. McDonald, and J. Mundinger, “A generic mean
field convergence result for systems of interacting objects,” in
Proc. 4th Int. Conf. on the Quantitative Evaluation of SysTems
(QEST 2007), Edinburgh, UK, 16–19 Sep. 2007, pp. 3–15.

[20] R. Johnson and D. Wichern, Applied Multivariate Statistical
Analysis. Prentice-Hall, 1998.

[21] “The enabling grids for e-science project,” online: http://www.
eu-egee.org.

Benny Van Houdt received his M.Sc. degree in mathematics and
computer science, and a Ph.D. in science from the University of
Antwerp (Belgium) in July 1997, and May 2001, respectively. From
October 2001 onwards he has been a postdoctoral fellow of the
FWO-Flanders. In 2007, he became a professor at the Mathematics
and Computer Science Department of the University of Antwerp.
His main research interest goes to the performance evaluation and
stochastic modelling of communication networks and random access
systems in particular.

Chris Develder received the M.Sc. degree in computer science engi-
neering and a Ph.D. in electrical engineering from Ghent University
(Ghent, Belgium), in July 1999 and December 2003 respectively.
From October 1999 to December 2003 he worked at the Department
of Information Technology (INTEC), at Ghent University, mainly
on optical packet/burst switched network paradigms. From January
2004 to September 2005, he worked for OPNET Technologies, to
rejoin INTEC in October 2005. Since October 2007, he is professor
at Ghent University, where his research interests include dimen-
sioning, modeling and optimizing optical Grid networks and their
control and management, as well as multimedia and home network
software and technologies.
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